Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T19:02:23.310Z Has data issue: false hasContentIssue false

Palynology and paleoenvironments of a Pliocene carbonate platform: the Clino core, Bahamas

Published online by Cambridge University Press:  20 May 2016

Martin J. Head
Affiliation:
Department of Geology, Earth Sciences Centre, University of Toronto, Ontario, Canada, M5S 3B1
Hildegard Westphal
Affiliation:
GEOMAR Forschungszentrum für marine Geowissenschaften, Wischhofstr. 1-3, D-24148 Kiel, Germany

Abstract

Neritic dinoflagellates from periplatform (slope) carbonates of the Clino borehole, located on the western, leeward margin of the Great Bahama Bank, record environmental fluctuations on the platform top. A lower Pliocene interval (3.6–4.2 Ma) contains platform-top sediments shed onto the lower slope when the platform was open and ramplike. Despite this open topography, abundant Polysphaeridium zoharyi indicate the presence of restricted marine environments on the platform top. Terrestrial palynomorphs are rare throughout this interval and imply a mostly or fully submergent platform top.

By late Pliocene times (about 2.1–2.3 Ma) the platform had become flat-topped and steep-sided, with the Clino site located on its upper slope. Samples characteristic of sea-level highstands and lowstands were selected for analysis. Polysphaeridium zoharyi is abundant only in lowstand samples and may have thrived in proximity to terrestrial vegetation. In highstand samples Lingulodinium machaerophorum replaces P. zoharyi, perhaps in response to less restricted marine environments on the platform top. This change in assemblages, along with apparent variations in cyst influx, reflects a fluctuating history of currents and salinities over the platform top in the late Pliocene. Upper Pliocene lowstand samples contain anomalously high proportions of terrestrial palynomorphs, allowing the identification of two phases of emergence and vegetation of the platform top. Palynology therefore appears to be a sensitive indicator of short-term (4th-order) sea-level change on carbonate platforms.

Dinoflagellate concentrations correlate positively with carbonate compaction, and infer that compacted layers have undergone dissolution of their metastable constituents. Dinoflagellate concentrations therefore can be useful in the often difficult task of assessing compaction and dissolution in fine-grained limestones where other indicators are absent.

The following dinoflagellate species are formally proposed: Operculodinium bahamense Head new species, Operculodinium? megagranum Head new species, and Spiniferites rhizophorus Head new species.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artzner, D. G., and Dörhöfer, G. 1978. Taxonomic note: Lejeunecysta nom. nov. pro Lejeunia Gerlach 1961 emend. Lentin and Williams 1976—dinoflagellate cyst genus. Canadian Journal of Botany, 56:13811382.CrossRefGoogle Scholar
Aubry, M.-P. 1993. Neogene allostratigraphy and depositional history of the De Soto Canyon area, northern Gulf of Mexico. Micropaleontology, 39:327366.Google Scholar
Beach, D. K. 1982. Depositional and diagenetic history of Pliocene-Pleistocene carbonates of northwestern Great Bahama Bank; evolution of a carbonate platform. Unpublished , , 447 p.Google Scholar
Beach, D. K. and Ginsburg, R. N. 1980. Facies succession of Pliocene-Pleistocene carbonates, Northwestern Great Bahama Bank. AAPG Bulletin, 64:16341642.Google Scholar
Benedek, P. N. 1972. Phytoplanktonten aus dem Mittel- und Oberoligozän von Tönisberg (Niederrheingebiet). Palaeontographica, Abteilung B, 137:171.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. III, and Aubry, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy, p. 129212. In Berggren, W. A., Kent, D. V., and Hardenbol, J. (eds.), Geochronology, Time Scales and Global Stratigraphic Correlation. Special Publication, 54. SEPM (Society for Sedimentary Geology), Tulsa, Oklahoma.Google Scholar
Bradford, M. R. 1975. New dinoflagellate cyst genera from the recent sediments of the Persian Gulf. Canadian Journal of Botany, 53:30643074.CrossRefGoogle Scholar
Bradford, M. R. and Wall, D. A. 1984. The distribution of Recent organic-walled dinoflagellate cysts in the Persian Gulf, Gulf of Oman, and Northwestern Arabian Sea. Palaeontographica, Abteilung B, 192:1684.Google Scholar
Brewster-Wingard, G. L., Ishman, S. E., Edwards, L. E., and Willard, D. A. 1996. Preliminary report on the distribution of modern fauna and flora at selected sites in north-central and north-eastern Florida Bay. U.S. Geological Survey Open-File Report 96-732, 34 p.CrossRefGoogle Scholar
Bujak, J. P. 1980. Dinoflagellate cysts and acritarchs from the Eocene Barton Beds of southern England, p. 3691. In Bujak, J. P., Downie, C., Eaton, G. L., and Williams, G. L., Dinoflagellate cysts and acritarchs from the Eocene of southern England. The Palaeontological Association, Special Papers in Palaeontology, 24.Google Scholar
Bujak, J. P. and Matsuoka, K. 1986. Late Cenozoic dinoflagellate cyst zonation in the Western and Northern Pacific, p. 725. In Wrenn, J. H., Duffield, S. L., and Stein, J. A. (eds.), Papers from the First Symposium on Neogene Dinoflagellate Cyst Biostratigraphy. American Association of Stratigraphic Palynologists Contributions Series, 17.Google Scholar
Bujak, J. P., Downie, C., Eaton, G. L., and Williams, G. L. 1980. Taxonomy of some Eocene dinoflagellate cyst species from southern England, p. 2636. In Bujak, J. P., Downie, C., Eaton, G. L., and Williams, G. L., Dinoflagellate Cysts and Acritarchs from the Eocene of Southern England. The Palaeontological Association, Special Papers in Palaeontology, Number 24.Google Scholar
Burchette, T. P., and Wright, V. P. 1992. Carbonate ramp depositional systems. Sedimentary Geology, 79:357.CrossRefGoogle Scholar
Bütschli, O. 1885. Erster Band. Protozoa, p. 8651088. In Dr. H. G. Bronn's Klassen und Ordnungen des Thier-Reiches, wissenschaftlich dargestellt in Wort und Bild. C. F. Winter'sche Verlagshandlung, Leipzig and Heidelberg.Google Scholar
Costa, L. I., and Downie, C. 1979. Cenozoic dinocyst stratigraphy of Sites 403 to 406 (Rockall Plateau), IPOD, Leg 48, p. 513529. In Montadert, L., Roberts, D. G., et al., Initial Reports of the Deep Sea Drilling Project, 48. U.S. Government Printing Office, Washington, D.C.Google Scholar
Dale, B. 1983. Dinoflagellate resting cysts: “Benthic Plankton,” p. 69-136. In Fryxell, G. A., (ed.), Survival Strategies of the Algae. Cambridge University Press, Cambridge.Google Scholar
Dale, B. 1996. Dinoflagellate cyst ecology: modelling and geological applications, p. 12491275. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications. Volume 3. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
Davey, R. J., and Williams, G. L. 1966. The genus Hystrichosphaeridium and its allies, p. 53106. In Davey, R. J., Downie, C., Sarjeant, W. A. S., and Williams, G. L., Studies on Mesozoic and Cainozoic dinoflagellate cysts. Bulletin of the British Museum (Natural History) Geology, Supplement 3.Google Scholar
de Coninck, J. 1969. Dinophyceae et Acritarcha de l'Yprésien du Sondage de Kallo. Institut royal des sciences naturelles de Belgique, Mémoire 161, p. 167.Google Scholar
de Vernal, A., Londeix, L., Mudie, P. J., Harland, R., Morzadec-Kerfourn, M. T., Turon, J.-L., and Wrenn, J. H. 1992. Quaternary organic-walled dinoflagellate cysts of the North Atlantic Ocean and adjacent seas: ecostratigraphy and biostratigraphy, p. 289328. In Head, M. J. and Wrenn, J. H. (eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
de Verteuil, L. 1996. Data report: Upper Cenozoic dinoflagellate cysts from the continental slope and rise off New Jersey, p. 439454. In Mountain, G. S., Miller, K. G., Blum, P., et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 150. Ocean Drilling Program, College Station, Texas.Google Scholar
de Verteuil, L. and Norris, G., 1996. Miocene dinoflagellate stratigraphy and systematics of Maryland and Virginia. Micropaleontology, 42(supplement):1172.Google Scholar
de Verteuil, L., Cunningham, K., Norris, G., and McNeill, D. 1996. Palynological evidence for the age and depositional environment of Upper Neogene siliciclastics in southernmost Florida, p. 31. Ninth International Palynological Congress, Houston, Texas, Program and Abstracts.Google Scholar
Deflandre, G., and Cookson, I. C. 1955. Fossil microplankton from Australian Late Mesozoic and Tertiary sediments. Australian Journal of Marine and Freshwater Research, 6:242313.Google Scholar
Droxler, A. W., and Schlager, W. 1985. Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas. Geology, 13:799802.Google Scholar
Drugg, W. S., and Loeblich, A. R. Jr. 1967. Some Eocene and Oligocene phytoplankton from the Gulf Coast, U.S.A. Tulane Studies in Geology, 5:181194.Google Scholar
Eberli, G. P., and Ginsberg, R. N. 1987. Segmentation and coalescence of Cenozoic carbonate platforms, northwestern Great Bahama Bank. Geology, 15:7579.Google Scholar
Eberli, G. P., and Ginsberg, R. N. 1989. Cenozoic progradation of northwestern Great Bahama Bank, a record of lateral platform growth and sea-level fluctuations, p. 339351. In Crevello, P. D., Wilson, J. L., Sarg, J. F., and Read, J. F. (eds.), Controls on Carbonate Platform and Basin Development. Special Publication, 44. SEPM (Society of Economic Paleontologists and Mineralogists), Tulsa, Oklahoma.CrossRefGoogle Scholar
Eberli, G. P., Swart, P. K., McNeill, D. F., Kenter, J. A. M., Anselmetti, F. S., Melim, L. A., and Ginsburg, R. N. 1997. A synopsis of the Bahamas Drilling Project: results from two deep core borings drilled on the Great Bahama Bank, p. 2341. In Eberli, G. P., Swart, P. K., Malone, M. J., et al., Proceedings of the Ocean Drilling Program, Initial Reports, 166. Ocean Drilling Program, College Station, Texas.Google Scholar
Edwards, L. E., and Andrle, V. A. S. 1992. Distribution of selected dinoflagellate cysts in modern marine sediments, p. 259288. In Head, M. J. and Wrenn, J. H. (eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
Edwards, L. E., and Weedman, S. D. 1996. Dinocysts in the shallow subsurface, southern Florida: Hydrology, biostratigraphy, and ecosystems studies. Ninth International Palynological Congress, Houston, Texas, Program and Abstracts, p. 3738.Google Scholar
Edwards, L. E., Weedman, S. D., Simmons, K. R., Scott, T. M., Brewster-Wingard, G. L., Ishman, S. E., and Carlin, N. M. 1998. Lithostratigraphy, petrography, biostratigraphy, and strontium-isotope stratigraphy of the surficial aquifer system of western Collier County, Florida. U.S. Geological Survey Open-File Report 98-205, 79 p.Google Scholar
Emslie, S. D., Allmon, W. D., Rich, F. J., Wrenn, J. H., and de France, S. D. 1996. Integrated taphonomy of an avian death assemblage in marine sediments from the late Pliocene of Florida. Palaeogeography, Palaeoclimatology, Palaeoecology, 124:107136.Google Scholar
Engel, E. R. 1992. Palynologische Evidenz klimarelevanter Ereignisse in miozänen Sedimenten des Nordatlantiks. Geologisches Jahrbuch, Series A, 125:3139.Google Scholar
Evitt, W. R. 1963. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, I. Proceedings of the National Academy of Sciences, Washington, 49:158164.CrossRefGoogle Scholar
Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., and Williams, G. L. 1993. A classification of living and fossil dinoflagellates. Micropaleontology Special Publication Number 7, 351 p.Google Scholar
Habib, D. 1971. Dinoflagellate stratigraphy across the Miocene-Pliocene boundary, Tabiano stratotype section. In Farinacci, A. (ed.), Proceedings of the Second Planktonic Conference, Rome 1970, (edizioni Tecnoscienza, Roma), 1:591598.Google Scholar
Habib, D. and Knapp, S. D. 1982. Stratigraphic utility of Cretaceous small acritarchs. Micropaleontology, 28:335371.Google Scholar
Haeckel, E. 1894. Entwurf eines natürlichen Systems der Organismen auf Grund ihrer Stammegeschichte, Erster Teil: Systematische Phylogenie der Protisten und Pflanzen. Georg Reimer, Berlin, 400 p.Google Scholar
Hall, C. A. Jr. 1964. Shallow-water marine climates and molluscan provinces. Ecology, 45:226234.CrossRefGoogle Scholar
Harland, R., and Hill, J. 1979. A reappraisal of the Cainozoic dinoflagellate cyst “Hystrichosphaeridium” choanophorum Deflandre et Cookson 1955. Review of Palaeobotany and Palynology, 28:3745.Google Scholar
Harland, R., Bonny, A. P., Hughes, M. J., and Morigi, A. N. 1991. The lower Pleistocene stratigraphy of the Ormesby Borehole, Norfolk, England. Geological Magazine, 128:647660.Google Scholar
Head, M. J. 1993. Dinoflagellate cysts, sporomorphs, and other palynomorphs from the upper Pliocene St. Erth Beds of Cornwall, southwestern England. Paleontological Society Memoir 31 (Journal of Paleontology, 67[3]Supplement), 62 p.Google Scholar
Head, M. J. 1994. Morphology and paleoenvironmental significance of the Cenozoic dinoflagellate genera Habibacysta and Tectatodinium. Micropaleontology, 40:289321.Google Scholar
Head, M. J. 1996a. Paleoecological and taxonomic revision of late Cenozoic dinoflagellates from the Royal Society borehole at Ludham, eastern England. Journal of Paleontology, 70:543570.Google Scholar
Head, M. J. 1996b. Modern dinoflagellate cysts and their biological affinities, p. 11971248. In Jansonius, J., and McGregor, D. C. (eds.), Palynology: principles and applications, Vol. 3. American Association of Stratigraphic Palynologists Foundation, College Station, Texas.Google Scholar
Head, M. J. 1997. Thermophilic dinoflagellate assemblages from the mid Pliocene of eastern England. Journal of Paleontology 71:165193.Google Scholar
Head, M. J. 1998a. Marine environmental change in the Pliocene and early Pleistocene of eastern England: the dinoflagellate evidence reviewed. In Van Kolfschoten, T., and Gibbard, P. (eds.), The Dawn of the Quaternary. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO, 60:119225.Google Scholar
Head, M. J. 1998b. New goniodomacean dinoflagellates with a compound hypotractal archeopyle from the late Cenozoic: Capisocysta Warny and Wrenn, emend. Journal of Paleontology, 72:797809.CrossRefGoogle Scholar
Head, M. J. 1998c. Pollen and dinoflagellates from the Red Crag at Walton-on-the-Naze, Essex: evidence for a mild climatic phase during the early Late Pliocene of eastern England. Geological Magazine, 135:803817.CrossRefGoogle Scholar
Head, M. J. and Wrenn, J. H. (eds.). 1992. A forum on Neogene and Quaternary dinoflagellate cysts: The edited transcript of a round table discussion held at the Second Workshop on Neogene Dinoflagellates, p. 131. In Head, M. J. and Wrenn, J. H. (eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
Head, M. J., Norris, G., and Mudie, P. J. 1989a. Palynology and dinocyst stratigraphy of the upper Miocene and lowermost Pliocene, ODP Leg 105, Site 646, Labrador Sea, p. 423451. In Srivastava, S. P., Arthur, M. A., Clement, B., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
Head, M. J., Norris, G., and Mudie, P. J. 1989b. New species of dinocysts and a new species of acritarch from the upper Miocene and lowermost Pliocene, ODP Leg 105, Site 646, Labrador Sea, p. 453466. In Srivastava, S. P., Arthur, M. A., Clement, B., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
Head, M. J., Norris, G., and Mudie, P. J. 1989c. Palynology and dinocyst stratigraphy of the Miocene in ODP Leg 105, Hole 645E, Baffin Bay, p. 467514. In Srivastava, S. P., Arthur, M. A., Clement, B., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
Islam, M. A. 1984. A study of Early Eocene palaeoenvironments in the Isle of Sheppey as determined from microplankton assemblage composition. Tertiary Research 6:1121.Google Scholar
Jan du Chěne, R. 1977. Étude palynologique du Miocène supérieur Andalou (Espagne). Revista Española de Micropaleontología, 9:97114.Google Scholar
Jan du Chěne, R., Stover, L. E., and de Coninck, J. 1985. New observations on the dinoflagellate cyst genus Kallosphaeridium De Coninck 1969. Cahiers de Micropaléontologie, Centre national de la Recherche Scientifique, 4:118.Google Scholar
Klumpp, B. 1953. Beitrag zur Kenntnis der Mikrofossilien des mittleren und oberen Eozän. Palaeontographica, Abteilung A, 103:377406.Google Scholar
Lentin, J. K., and Williams, G. L. 1976. A monograph of fossil peridinioid dinoflagellate cysts. Bedford Institute of Oceanography Report Series, BI-R-75-16, 237 p.Google Scholar
Lentin, J. K., and Williams, G. L. 1981. Fossil dinoflagellates: index to genera and species, 1981 edition. Bedford Institute of Oceanography Report Series, BI-R-81-12, 345 p.Google Scholar
Lentin, J. K., and Williams, G. L. 1993. Fossil dinoflagellates: index to genera and species, 1993 edition. American Association of Stratigraphic Palynologists Contributions Series, 28, 856 p.Google Scholar
Lidz, B. H., and Bralower, T. J. 1994. Microfossil biostratigraphy of prograding Neogene platform-margin carbonates, Bahamas: Age constraints and alternatives. Marine Micropaleontology, 23:265344.Google Scholar
Lidz, B. H., and McNeill, D. F. 1995. Deep-sea biostratigraphy of prograding platform margins (Neogene, Bahamas): key evidence linked to depositional rhythm. Marine Micropaleontology, 25:87125.CrossRefGoogle Scholar
Lindemann, E. 1928. Abteilung Peridineae (Dinoflagellatae), p. 3104. In Engler, A. and Prantl, K. (eds.), Die Natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen. Zweite stark vermehrte und verbesserte Auflage herausgegeben von A. Engler. 2 Band. Wilhelm Engelmann, Leipzig.Google Scholar
MacLean, J. L. 1989. An overview of Pyrodinium red tides in the Western Pacific, p. 17. In Hallegraeff, G. M. and Maclean, J. L. (eds.), Biology, epidemiology and management of Pyrodinium red tides. ICLARM Conference Proceedings 21. International Center for Living Aquatic Resources Management, Manila, Philippines.Google Scholar
Maher, L. J. 1981. Statistics for microfossil concentration measurements employing samples spiked with marker grains. Review of Palaeobotany and Palynology, 32:153191.Google Scholar
Mantell, G. A. 1850. A pictorial atlas of fossil remains, consisting of coloured illustrations selected from Parkinson's “Organic remains of a former world,” and Artis's “Antediluvian phytology.” Henry G. Bonn, London, 207 p.Google Scholar
Manum, S. B., Boulter, M. C., Gunnarsdottir, H., Rangnes, K., and Scholze, A. 1989. Eocene to Miocene palynology of the Norwegian Sea (ODP Leg 104), p. 611662. In Eldholm, O., Thiede, J., Taylor, E., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 104. Ocean Drilling Program, College Station, Texas.Google Scholar
Matsuoka, K. 1983. Late Cenozoic dinoflagellates and acritarchs in the Niigata District, central Japan. Palaeontographica, Abteilung B, 187:89154.Google Scholar
Matsuoka, K. 1985. Organic-walled dinoflagellate cysts from surface sediments of Nagasaki Bay and Senzaki Bay, West Japan. Bulletin of the Faculty of Liberal Arts, Nagasaki University, Natural Science, 25(2):21115.Google Scholar
Matsuoka, K., McMinn, A., and Wrenn, J. H. 1997. Restudy of the holotype of Operculodinium centrocarpum (Deflandre & Cookson) Wall (Dinophyceae) from the Miocene of Australia, and the taxonomy of related species. Palynology, 21:1933.CrossRefGoogle Scholar
McCarthy, F. M. G., and Mudie, P. J. 1996. Palynology and dinoflagellate biostratigraphy of Upper Cenozoic sediments from Sites 898 and 900, Iberia Abyssal Plain, p. 241265. In Whitmarsh, R. B., Sawyer, D. S., Klaus, A., and Masson, D. G., (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 149. Ocean Drilling Program, College Station, Texas.Google Scholar
McMinn, A. 1992a. Neogene dinoflagellate distribution in the eastern Indian Ocean from Leg 123, Site 765, p. 429441. In Gradstein, F. M., Ludden, J. N., Adamson, A. C., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 123. Ocean Drilling Program, College Station, Texas.CrossRefGoogle Scholar
McMinn, A. 1992b. Pliocene through Holocene dinoflagellate cyst biostratigraphy of the Gippsland Basin, Australia, p. 147161. In Head, M. J. and Wrenn, J. H. (eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
McMinn, A. 1992c. Recent and late Quaternary dinoflagellate cyst distribution on the continental shelf and slope of southeastern Australia. Palynology, 16:1324.Google Scholar
McMinn, A. 1993a. Neogene dinoflagellate cyst biostratigraphy from sites 815 and 823, Leg 133, northeastern Australian margin, p. 97105. In McKenzie, J. A., Davies, P. J., Palmer-Julson, A., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 123. Ocean Drilling Program, College Station, Texas.Google Scholar
McMinn, A. 1993b. Quaternary dinoflagellate cyst distribution at Sites 820, Great Barrier Reef, p. 9395. In McKenzie, J. A., Davies, P. J., Palmer-Julson, A., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 123. Ocean Drilling Program, College Station, Texas.Google Scholar
McMinn, A. and Wells, P. 1997. Use of dinoflagellate cysts to determine changing Quaternary sea-surface temperature in southern Australia. Marine Micropaleontology, 29:407422.Google Scholar
McNeill, D. F., Eberli, G. P., Lidz, B. H., Swart, P. K., and Kenter, J. A. M. In press. Chronostratigraphy of prograding carbonate platform margins: a record of dynamic slope sedimentation, Western Great Bahama Bank. In Ginsburg, R. N. (ed.), Contributions in Sedimentology. SEPM (Society for Sedimentary Geology), Tulsa, Oklahoma.Google Scholar
Pascher, A. 1914. Über Flagellaten und Algen. Berichte der Deutschen Botanischen Gesellshaft, 36:136160.Google Scholar
Poulsen, N. E., Manum, S. B., Williams, G. L., and Ellegaard, M. 1996. Tertiary dinoflagellate biostratigraphy of Sites 907, 908, and 909 in the Norwegian-Greenland Sea, p. 255287. In Thiede, J., Myhre, A. M., Firth, J. V., et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 151. Ocean Drilling Program, College Station, Texas.Google Scholar
Reid, P. C. 1974. Gonyaulacacean dinoflagellate cysts from the British Isles. Nova Hedwigia, 25:579637.Google Scholar
Reid, P. C. 1977. Peridiniacean and Glenodiniacean dinoflagellate cysts from the British Isles. Nova Hedwigia, 29:429463.Google Scholar
Reijmer, J. J. G., Schlager, W., Bosscher, H., Beets, C. J., and McNeill, D. F. 1992. Pliocene/Pleistocene platform facies transition recorded in calciturbidites (Exuma Sound, Bahamas). Sedimentary Geology, 78:171179.Google Scholar
Rossignol, M. 1962. Analyse pollinique de sediments marins Quaternaires en Israël. II. Sédiments Pléistocènes. Pollen et Spores, 4:121148.Google Scholar
Rossignol, M. 1964. Hystrichosphères du Quaternaire en Méditerranée orientale, dans les sédiments Pléistocènes et les boues marines actuelles. Revue de Micropaléontologie, 7:8399.Google Scholar
Sarjeant, W. A. S. 1970. The genus Spiniferites Mantell, 1850 (Dinophyceae). Grana, 10:7478.Google Scholar
Schiller, J. 1935. Dinoflagellatae (Peridineae) in monographischer Behandlung. 2. Teil, Lieferung 2, p. 161320. In Kolkwitz, R. (ed.), Zehnter Band, Flagellatae. In Dr. L. Rabenhorst's Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Akademische Verlagsgesellschaft, Leipzig.Google Scholar
Schlager, W., Reijmer, J. J. G., and Droxler, A. W. 1994. Highstand shedding of carbonate platforms. Journal of Sedimentary Petrology, B64:270281.Google Scholar
Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores, 13:615621.Google Scholar
Stover, L. E. 1977. Oligocene and Early Miocene dinoflagellates from Atlantic Corehole 5/5B, Blake Plateau. American Association of Stratigraphic Palynologists, Contributions Series, 5A:6689.Google Scholar
Stover, L. E. and Evitt, W. R. 1978. Analyses of pre-Pleistocene organic-walled dinoflagellates. Stanford University Publications Geological Sciences, 15:1300.Google Scholar
Strauss, C., and Lund, J. J. 1992. A Middle Miocene dinoflagellate cyst microflora from Papendorf near Hamburg, Germany. Geologisch-Paläontologisches Institut und Museum, University of Hamburg, Mitteilungen, 73:159189.Google Scholar
Taylor, F. J. R. 1980. On dinoflagellate evolution. BioSystems, 13:65108.Google Scholar
Traverse, A., and Ginsburg, R. N. 1966. Palynology of the surface sediments of Great Bahama Bank, as related to water movement and sedimentation. Marine Geology, 4:417459.CrossRefGoogle Scholar
Vail, P. R., Audemard, F., Bowman, S. A., Eisner, P. N., and Perez-Cruz, C. 1991. The stratigraphic signatures of tectonics, eustacy, and sedimentology—an overview, p. 617659. In Einsele, G., Ricken, W., and Seilacher, A. (eds.), Cycles and Events in Stratigraphy. Springer, Berlin-Heidelberg-New York.Google Scholar
Versteegh, G. J. M. 1994. Recognition of cyclic and non-cyclic environmental changes in the Mediterranean Pliocene: A palynological approach. Marine Micropaleontology, 23:147183.Google Scholar
Versteegh, G. J. M. 1997. The onset of major Northern Hemisphere glaciations and their impact on dinoflagellate cysts and acritarchs from the Singa section, Calabria (southern Italy) and DSDP Holes 607/607A (North Atlantic). Marine Micropaleontology, 30:319343.Google Scholar
Versteegh, G. J. M. and Zevenboom, D. 1995. New genera and species of dinoflagellate cysts from the Mediterranean Neogene. Review of Palaeobotany and Palynology, 85:213229.Google Scholar
Versteegh, G. J. M. and Zonneveld, K. A. F. 1994. Determination of (palaeo-)ecological preferences of dinoflagelIates by applying detrended and canonical correspondence analysis to Late Pliocene dinoflagellate cyst assemblages of the south Italian Singa section. Review of Palaeobotany and Palynology, 84:181199.Google Scholar
Wall, D. 1967. Fossil microplankton in deep-sea cores from the Caribbean Sea. Palaeontology, 10:95123.Google Scholar
Wall, D. 1971. Biological problems concerning fossilizable dinoflagellates. Geoscience and Man, 3:115.Google Scholar
Wall, D. and Dale, B. 1967. The resting cysts of modern marine dinoflagellates and their paleontological significance. Review of Paleobotany and Palynology, 2:349354.Google Scholar
Wall, D. and Dale, B. 1968. Modern dinoflagellate cysts and evolution of the Peridiniales. Micropaleontology, 14:265304.Google Scholar
Wall, D. and Dale, B. 1969. The ‘hystrichosphaerid’ resting spore of the dinoflagellate Pyrodinium bahamense Plate 1906. Journal of Phycology, 5:140149.Google Scholar
Wall, D., Dale, B., and Harada, K. 1973. Descriptions of new fossil dinoflagellates from the Late Quaternary of the Black Sea. Micropaleontology, 19:1831.Google Scholar
Wall, D. and Dale, B., Lohman, G. P., and Smith, W. K. 1977. The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic oceans and adjacent seas. Marine Micropaleontology, 2:121200.CrossRefGoogle Scholar
Warny, S. A., and Wrenn, J. H. 1997. New species of dinoflagellate cysts from the Bou Regreg Core: a Miocene-Pliocene boundary section on the Atlantic Coast of Morocco. Review of Palaeobotany and Palynology, 96:281304.Google Scholar
Weedman, S. D., Scott, T. M., Edwards, L. E., Brewster-Wingard, G. L., and Libarkin, J. C. 1995. Preliminary analysis of integrated stratigraphic data from the Phred #1 corehole, Indian River County, Florida. U.S. Geological Survey Open-File Report 95-824, 63 p.Google Scholar
Westphal, H. 1998. Carbonate platform slopes—a record of changing conditions. Lecture Notes in Earth Sciences, Volume 75. Springer Verlag, Berlin, Heidelberg, New York, 179 p.Google Scholar
Westphal, H. and Munnecke, A. 1997. Mechanical compaction versus early cementation in fine-grained limestones: differentiation by the preservation of organic microfossils. Sedimentary Geology, 112:3342.Google Scholar
Westphal, H., Reijmer, J. J. G., and Head, M. J. In press. Input and diagenesis on a carbonate slope (Bahamas): response to morphologic evolution and sea-level fluctuations. In Harris, P. M., Sailer, A. H., Simo, T., and Handford, R. (eds.), Advances in Carbonate Sequence Stratigraphy—Application to Reservoirs, Outcrops and Models. Special Publication. SEPM (Society for Sedimentary Geology), Tulsa, Oklahoma.Google Scholar
Williams, G. L., and Downie, C. 1966. The genus Hystrichokolpoma. In Davey, R. J., Downie, C., Sarjeant, W. A. S., and Williams, G. L., Studies on Mesozoic and Cainozoic dinoflagellate cysts. Bulletin of the British Museum (Natural History) Geology, Supplement 3:176181.Google Scholar
Williams, G. L., Stover, L. E., and Kidson, E. J. 1993. Morphology and stratigraphic ranges of selected Mesozoic-Cenozoic dinoflagellate taxa in the Northern Hemisphere. Geological Survey of Canada Paper 92-10, 137 p.Google Scholar
Wilson, G. J. 1973. Palynology of the middle Pleistocene Te Piki bed, Cape Runaway, New Zealand. New Zealand Journal of Geology and Geophysics, 16:345354.Google Scholar
Wrenn, J. H. 1988. Differentiating species of the dinoflagellate cyst genus Nematosphaeropsis Deflandre and Cookson, 1955. Palynology, 12:129150.Google Scholar
Wrenn, J. H. and Kokinos, J. P. 1986. Preliminary comments on Miocene through Pleistocene dinoflagellate cysts from De Soto Canyon, Gulf of Mexico, p. 169225. In Wrenn, J. H., Duffield, S. L., and Stein, J. A. (eds.), Papers from the First Symposium on Neogene Dinoflagellate Cyst Biostratigraphy. American Association of Stratigraphic Palynologists Contributions Series, 17.Google Scholar
Zevenboom, D. 1995. Dinoflagellate Cysts from the Mediterranean Late Oligocene and Miocene. CIP-Gegevens Koninklijke Bibliotheek, Den Haag, 221 p. (Published , )Google Scholar
Zonneveld, K. A. F. 1995. Palaeoclimatic and palaeo-ecological changes during the last deglaciation in the Eastern Mediterranean—implications for dinoflagellate ecology. Review of Palaeobotany and Palynology, 84:221253.Google Scholar