Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T03:48:43.746Z Has data issue: false hasContentIssue false

A paleoenvironmental study of early to middle Pleistocene foraminifera of the Santa Barbara Formation at Santa Barbara, California

Published online by Cambridge University Press:  20 May 2016

R. Timothy Patterson
Affiliation:
1Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, Ontario K1S 5B6, Canada
Charlotte A. Brunner
Affiliation:
2Center For Marine Science, University of Southern Mississippi, Stennis Space Center 39529
Rosemary Capo
Affiliation:
3Department of Earth and Space Sciences, University of California, Los Angeles 90024
Jeremy Dahl
Affiliation:
3Department of Earth and Space Sciences, University of California, Los Angeles 90024

Abstract

An interval of the Early to Middle Pleistocene history of the California Borderland was assessed using multivariate analysis of foraminifera from the Santa Barbara Formation at Bathhouse Beach, Santa Barbara, California. A census of 93 species of benthic foraminifera and nine species of planktonic foraminifera was compiled from 11 samples from the shelly marls, silts, and sands of the lower member. Most species of benthic foraminifera are rare and only 38 species comprise one percent or more of the population in one or more samples.

Paleoenvironment of the sea floor was determined based on benthic foraminifera. R-mode cluster analysis defined five associations which are similar to those of the present-day banks and terraces of the California Borderland. Q-mode cluster analysis grouped samples into four biofacies which characterize shallow banks near 50 meters water depth and off-shore ridges and deep banks averaging 150 meters water depth. The stratigraphic succession of biofacies indicates two transgressive cycles separated by an apparent disconformity between 7.5 and 8.9 meters above the base of the section (between samples 3 and 4).

Paleoceanography of surficial waters was interpreted from planktonic foraminifera. Paleotemperature was assessed from the proportion of sinistral to dextral morphs and from the proportion of encrusted, compact morphs to reticulate, globular morphs of Neogloboquadrina pachyderma. The coiling morphs show a warm interval from the base of the section to about 12 meters (between samples 5 and 6), and a cooler interval from about 12 meters to about 24 meters (between samples 10 and 11), and an interval of intermediate paleotemperature in the topmost sample of the section. Changes in the planktonic assemblage do not coincide with the transgressive cycles inferred from the benthic biofacies.

The Bathhouse Beach section can be placed chronostratigraphically based on planktonic foraminiferal coiling shifts and strontium isotopic data. The isotopic age range of 400 to 900 Kyr brackets the 600 Kyr age assigned by Lagoe and Thompson (1988) to the Neogloboquadrina pachyderma coiling dominance interval CD9/CD8 boundary which occurs midway in the section, between samples 5 and 6.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asano, K. 1951. Part 13: Anomalinidae, p. 1219. In Stach, L. W. (ed.), Illustrated Catalogue of Japanese Tertiary Smaller Foraminifera. Hosokawa Printing Company, Tokyo.Google Scholar
Bagg, R. M. Jr. 1912. Pliocene and Pleistocene foraminifera from southern California. U.S. Geological Survey, Bulletin 513, 153 p.Google Scholar
Balkwill, F. P., and Millett, F. W. 1884. The foraminifera of Galway; Part II. Journal of Microscopy and Natural Science, 3:7890.Google Scholar
Bandy, O. L. 1953. Ecology and paleoecology of some California foraminifera, 1: The frequency distribution of Recent foraminifera off California. Journal of Paleontology, 27:161182.Google Scholar
Bandy, O. L. 1960. The geologic significance of coiling ratios in the foraminifer Globigerina pachyderma (Ehrenberg). Journal of Paleontology, 34:671681.Google Scholar
Bandy, O. L., Casey, R. E., and Wright, R. C. 1971. Late Neogene planktonic zonation, magnetic reversals, and radiometric dates, Antarctica to the tropics. Antarctica Research Series (Oceanology I), 15:126.CrossRefGoogle Scholar
Bandy, O. L., Ingle, J. C. Jr., and Resig, J. 1964. Facies trends, San Pedro Bay, California. Geological Society of America Bulletin, 75:403424.CrossRefGoogle Scholar
Bergen, F. W., and O.'Neil, P. 1979. Distribution of Holocene foraminifera in the Gulf of Alaska. Journal of Paleontology, 53:12671292.Google Scholar
Berggren, W. A., Kent, D. V., Flynn, J. J., and Van Couvering, J. A. 1985. Cenozoic geochronology. Geological Society of America Bulletin, 96:14071418.2.0.CO;2>CrossRefGoogle Scholar
Blake, G. H. 1976. The distribution of benthic foraminifera in the outer Borderland and its relationship to Pleistocene marl biofacies. Unpubl. , , Los Angeles, 143 p.Google Scholar
Blow, W. H. 1959. Age, correlation, and biostratigraphy of the upper Tocuyo (San Lorenzo) and Pozón Formations, eastern Falcón, Venezuela. Bulletins of American Paleontology, 39:67252.Google Scholar
Brady, H. B. 1864. Contributions to the knowledge of the foraminifera: on the rhizopodal fauna of the Shetlands. Transactions of the Linnean Society of London, 24:463476.CrossRefGoogle Scholar
Brady, H. B. 1881. Notes on some of the reticularian Rhizopoda of the Challenger Expedition; Part III. The Quarterly Journal of Microscopical Science, 21:3171.Google Scholar
Brady, H. B. 1884. Report on the foraminifera dredged by H.M.S. Challenger during the years 1873-1876. Reports of the Scientific Results of the Voyage of the H.M.S. Challenger , 9,(Zoology):814 p.Google Scholar
Brotzen, F. 1936. Foraminifera aus dem schwedischen, untersten Senon von Eriksdal in Schonen. Årsbok Sveriges Geologiska Undersokning, Series C, No. 396 (Årsbok 30, No. 3):1206.Google Scholar
Brunner, C. A., and Ledbetter, M. T. 1987. Sedimentological and micropaleontological detection of turbidite muds in hemipelagic sequences: an example from the Late Pleistocene levee of Monterey Fan, central California continental margin. Marine Micropaleontology, 12:223239.CrossRefGoogle Scholar
Buchner, P. 1940. Die Lagenen des Golfes von Neapel und der marinen Ablagerungen auf Ischia (Beiträge zur Naturgeschichte der Insel Ischia 1). Nova Acta Leopoldina, new series, 9:364560.Google Scholar
Capo, R. C., and DePaolo, D. J. 1986. Pleistocene Sr isotope stratigraphy and paleoceanography. Geological Society of America, Abstracts with Programs, 18,:557.Google Scholar
Coulbourn, W. T., Parker, F. L., and Berger, W. H. 1980. Faunal solution patterns of planktonic foraminifers in surface sediments of the North Pacific. Marine Micropaleontology, 5:329399.Google Scholar
Crouch, R. W. 1952. Significance of temperature on foraminifera from deep basins off the southern California coast. Bulletin of the American Association of Petroleum Geologists, 36:807843.Google Scholar
Cushman, J. A. 1911. A monograph of the foraminifera of the north Pacific Ocean; Part II—Textulariidae. U.S. National Museum Bulletin 71, 108 p.Google Scholar
Cushman, J. A. 1913. A monograph of the foraminifera of the north Pacific Ocean; Part III—Lagenidae. U.S. National Museum Bulletin 71, 125 p.Google Scholar
Cushman, J. A. 1922. Results of the Hudson Bay expedition, 1920; I—The foraminifera. Canada, Biological Board of Canada, Contributions of Canadian Biology (1921), 9:135147.Google Scholar
Cushman, J. A. 1925. Recent foraminifera from British Columbia. Contributions from the Cushman Laboratory for Foraminiferal Research, 1:3847.Google Scholar
Cushman, J. A. 1934. Notes on the genus Tretomphalus, with description of some new species and a new genus Pyropilus . Contributions from the Cushman Laboratory for Foraminiferal Research, 10:79101.Google Scholar
Cushman, J. A., and Edwards, P. G. 1937. Astrononion a new genus of the foraminifera, and its species. Contributions from the Cushman Laboratory for Foraminiferal Research, 13:2936.Google Scholar
Cushman, J. A., and Grant, U. S. 1927. Late Tertiary and Quaternary Elphidiums of the west coast of North America. San Diego Society of Natural History Transactions, 5:6982.Google Scholar
Cushman, J. A., and Gray, H. B. 1946a. Some new species and varieties of foraminifera from the Pliocene of Timms Point, California. Contributions from the Cushman Laboratory for Foraminiferal Research, 22:6569.Google Scholar
Cushman, J. A., and Gray, H. B. 1946b. A foraminiferal fauna from the Pliocene of Timms Point, California. Cushman Laboratory For Foraminiferal Research, Special Publication 19, 46 p.Google Scholar
Cushman, J. A., and Hughes, D. D. 1925. Some later Tertiary Cassidulinas of California. Contributions from the Cushman Laboratory for Foraminiferal Research, 1:1117.Google Scholar
Cushman, J. A., and McCulloch, I. A. 1939. A report on some arenaceous foraminifera. The University of Southern California Publications, Allan Hancock Pacific Expedition, Los Angeles, California, 6:1113.Google Scholar
Cushman, J. A., and McCulloch, I. A. 1942. Some Virgulininae in the collections of the Allen Hancock Foundation. The University of Southern California Publications, Allan Hancock Pacific Expedition, Los Angeles, California, 6:179230.Google Scholar
Cushman, J. A., and McCulloch, I. A. 1950. Some Lagenidae in the collections of the Allan Hancock Foundation. The University of Southern California Publications, Allan Hancock Pacific Expedition, Los Angeles, California, 6:295364.Google Scholar
Cushman, J. A., and Moyer, D. A. 1930. Some Recent foraminifera from off San Pedro, California. Contributions from the Cushman Laboratory for Foraminiferal Research, 6:4962.Google Scholar
Cushman, J. A., and Todd, R. 1941. Notes on the species of Uvigerina and Angulogerina described from the Pliocene and Pleistocene. Contributions from the Cushman Laboratory for Foraminiferal Research, 17:7078.Google Scholar
Cushman, J. A., and Todd, R. 1944. The genus Spiroloculina and its species. Contributions from the Cushman Laboratory for Foraminiferal Research, Special Publication 11, 82 p.Google Scholar
Cushman, J. A., and Valentine, W. W. 1930. Shallow-water foraminifera from the channel islands of southern California. Contributions from the Department of Geology, Stanford University, 1:151.Google Scholar
Czjzek, J. 1848. Beitrag zur Kenntniss der fossilien Foraminiferen des wiener Beckens. Naturwissenschaftliche Abhandlungen, Wien, Östertreich, 2:137150.Google Scholar
DePaolo, D. J. 1986. Detailed record of the Neogene Sr isotopic evolution of seawater from DSDP site 590B. Geology, 14:103106.Google Scholar
DePaolo, D. J., Kyte, F. T., Marshall, B. D., O'Neil, J. R., and Smit, J. 1983. Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain: evidence for an oceanic impact site. Earth Planetary Science Letters, 64:356373.Google Scholar
Dibblee, T. W. Jr. 1966. Geology of the central Santa Ynez Mountains, Santa Barbara County, California. California Division of Mines and Geology, Bulletin 186, 99 p.Google Scholar
Dixon, W. J. 1981. BMDP Statistical Software. University of California Press, Berkeley, 773 p.Google Scholar
Douglas, R. G. 1981. Paleoecology of continental margin basins: a modern case history from the borderland of southern California, p. 121156. In Douglas, R. G., Colburn, I. P., and Gorsline, D. S. (eds.), Depositional Systems of Active Continental Margin Basins. Short Course Notes, Society of Economic Paleontologists and Mineralogists, Pacific Section.Google Scholar
Douglas, R. G., Cotton, M. L., and Wall, L. 1979. Distributional and variability analysis of benthic foraminifera in the southern California Bight. Bureau of Land Management, Department of the Interior Contract AA550-CT6-40, 219 p.Google Scholar
Douglas, R. G., Walch, C., and Blake, G. 1976. Benthic microfauna. BLM Southern California Baseline Study, Final Report, 3, Report 2.5, Washington, D.C.Google Scholar
Dowsett, H.-J. 1988. Diachrony of late Neogene microfossils in the southwest Pacific Ocean; application of the graphic correlation method. Paleoceanography, 3:209222.Google Scholar
Echols, R. J., and Armentrout, J. M. 1980. Holocene foraminiferal distribution patterns on the shelf and slope, Yakataga-Yakutat area, northern Gulf of Alaska, p. 281303. In Field, M. E. et al. (eds.), Quaternary Depositional Environments of the Pacific Coast. Pacific Coast Paleogeography Symposium 4, Society of Economic Paleontologists and Mineralogists, Pacific Section, Los Angeles.Google Scholar
Egger, J. G. 1893. Foraminiferen aus Meeresgrundproben, gelothet von 1874 bis 1876 von S. M. Sch. Gazelle. (K.) Bayerischen Akademie der Wissenschaften, Mathematisch-Physikalischen Klasse, Abhandlungen, Sitzungsberichte, München, 18:193458.Google Scholar
Ehrenberg, C. G. 1861. Elemente des tiefen Meeresgrundes im Mexikanischen Golfstrome bei Florida; Über dïe Tiefgrund-Verhältnisse des Oceans am Eingange der Davisstrasse und bei Island. (K.) Preuss. Akademie der Wissenschaften, Physikalisch-Mathematischen Klasse, Bericht, Monatsberichhte, Berlin, p. 275315.Google Scholar
Ehrenberg, C. G. 1873. Mikrogeologische studien über das kleinste Leben der Meeres-Tiefgründe aller zonen und dessen geologischen einfluss. (Königlichen) Akademie der Wissenschaften zur Berlin, Physikalische Abhandlungen; Physikalische-Mathematisch Klasse, Abhandlungen, p. 131397.Google Scholar
Emery, K. O. 1960. The sea off southern California. John Wiley and Sons, Inc. New York, 366 p.Google Scholar
Fanale, F. P., and Schaeffer, O. A. 1965. Helium-uranium ratios for Pleistocene and Tertiary fossil aragonites. Science, 149:312317.Google Scholar
Galloway, J. J., and Wissler, S. G. 1927a. Pleistocene foraminifera from the Lomita Quarry, Palos Verdes Hills, California. Journal of Paleontology, 1:3587.Google Scholar
Galloway, J. J., and Wissler, S. G. 1927b. Correction of names of foraminifera. Journal of Paleontology, 1:193.Google Scholar
Gorsline, D. S. 1978. Anatomy of margin basins. Journal of Sedimentary Petrology, 48:10551068.Google Scholar
Gorsline, D. S. 1980. Depositional patterns of hemipelagic Holocene sediments in borderland basins on an active margin, p. 185200. In Field, M. E. et al. (eds.), Quaternary Depositional Environments of the Pacific Coast. Pacific Coast Paleogeography Symposium 4, Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles.Google Scholar
Grant, U. S., and Gale, H. R. 1934. Pliocene and Pleistocene Mollusca of California and adjacent regions with notes on their morphology, classification, nomenclature and a special treatment of the Pectinidae and the Turridae (including a few Miocene and Recent species) together with a summary of the stratigraphic relations of the formations involved. Memoirs of the San Diego Society of Natural History, 1, 1036 p.Google Scholar
Grossman, E. L. 1987. Stable isotopes in modern benthic foraminifers; a study of vital effect. Journal of Foraminiferal Research, 17:4861.CrossRefGoogle Scholar
Holman, W. 1958. Correlation of producing zones of Ventura Basin oil fields, p. 191199. In Higgins, J. W. (ed.), A Guide to the Geology and Oil Fields of the Los Angeles and Ventura Regions. American Association of Petroleum Geologists, Pacific Section, Los Angeles.Google Scholar
Ingle, J. C. Jr. 1967. Foraminiferal biofacies variation and the Miocene-Pliocene boundary in southern California. Bulletins of American Paleontology, 52:217394.Google Scholar
Ingle, J. C. Jr. 1972. Biostratigraphy and paleoecology of Early Miocene through Early Pleistocene benthonic and planktonic foraminifera, p. 255283. In Steinmeyer, E. (ed.), The Pacific Coast Miocene Biostratigraphic Symposium. Pacific Section, Society of Economic Paleontologists and Mineralogists.Google Scholar
Ingle, J. C. Jr. 1978. Neogene biostratigraphy and paleoenvironments of the western Ventura Basin with special reference to the Balcon Canyon section, p. 3747. In Addicott, W. O. (ed.), Neogene Biostratigraphy of Selected Areas in the California Coast Ranges. U.S. Geological Survey Open-File Report 78-446.Google Scholar
Ingle, J. C. Jr. 1980. Cenozoic paleobathymetry and depositional history of selected sequences within the southern California continental borderland, p. 163195. In Sliter, W. V. (ed.), Studies in Marine Micropaleontology and Paleoecology: A Memorial Volume to Orville L. Bandy. Cushman Foundation For Foraminiferal Research, Special Publication 19.Google Scholar
Keen, A. M., and Bentson, H. 1944. Checklist of California Tertiary marine Mollusca. Geological Society of America Special Paper 56, 280 p.Google Scholar
Keith, M. L., Anderson, G. M., and Eichler, R. 1964. Carbon and oxygen isotopic composition of mollusk shells from marine and freshwater environments. Geochimica et Cosmochimica Acta, 28:11751786.Google Scholar
Keith, M. L., Anderson, G. M., and Weber, J. M. 1964. Isotopic composition and environmental classification of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28:17871816.CrossRefGoogle Scholar
Keller, G. 1978. Morphologic variation of Neogloboquadrina pachyderma (Ehrenberg) in sediments of the marginal and central northeast Pacific Ocean and paleoclimatic interpretation. Journal of Foraminiferal Research, 8:208224.Google Scholar
Kennett, J. P., and Srinivasan, M. S. 1980. Surface ultrastructural variation in Neogloboquadrina pachyderma (Ehrenberg): phenotypic variation and phylogeny in the Late Cenozoic, p. 134162. In Sliter, W. V. (ed.), Studies in Marine Micropaleontology: A Memorial Volume to Orville L. Bandy. Cushman Foundation For Foraminiferal Research Special Publication 19.Google Scholar
Knott, S. A. 1986. Quaternary paleoceanography of the northeastern Pacific margin based on quantitative studies of planktonic foraminifera. Unpubl. , , 181 p.Google Scholar
Lagoe, M. B., and Thompson, P. R. 1988. Chronostratigraphic significance of late Cenozoic planktonic foraminifera from the Ventura Basin, California: potential for improving tectonic and depositional interpretation. Journal of Foraminiferal Research, 18:250266.Google Scholar
Lankford, R. R., and Phleger, F. B. 1973. Foraminifera from the nearshore turbulent zone, western North America. Journal of Foraminiferal Research, 3:101132.Google Scholar
Linné, C. 1758. Systema naturae. Edition 10, Salvii, L., Holmiae [Stockholm], 1:1823.Google Scholar
Loeblich, A. R. Jr., and Tappan, H. 1953. Studies of Arctic Foraminifera. Smithsonian Miscellaneous Collections, 121, 150 p.Google Scholar
Loeblich, A. R. Jr., and Tappan, H. 1954. New names for two foraminiferal homonyms. Journal of the Washington Academy of Sciences, 44:384.Google Scholar
Loeblich, A. R. Jr., and Tappan, H. 1957. Eleven new genera of the foraminifera. U.S. National Museum Bulletin, 215:223232.Google Scholar
Loeblich, A. R. Jr., and Tappan, H. 1963. Four new Recent genera of Foraminiferida. Journal of Protozoology, 10:212215.Google Scholar
Loeblich, A. R. Jr., and Tappan, H. 1987. Foraminiferal Genera and Their Classification. Van Nostrand Reinhold Co., New York, 2047 p. (2 vols.).Google Scholar
McCulloch, I. A. 1977. Qualitative observations on Recent foraminiferal tests with emphasis on the eastern Pacific. The University of Southern California, Los Angeles, California, 1078 p. (3 pts.).Google Scholar
McGlasson, R. H. 1959. Foraminiferal biofacies around Santa Catalina Island, California. Micropaleontology, 5:217240.Google Scholar
Montagu, G. 1803. Testacea Britannica, or Natural History of British Shells, Marine, Land and Fresh Water, Including the Most Minute. J. S. Hollis, Romsey, England, 606 p.Google Scholar
Naeser, C. W., Briggs, N. D., Obradovich, J. D., and Izett, G. A. 1981. Geochronology of Quaternary tephra deposits, p. 1347. In Self, S. and Sparks, R. S. J. (eds.), Tephra Studies. D. Reidel Publishing Co., Boston.Google Scholar
Nagle, H. E., and Parker, E. S. 1971. Future oil and gas potential of onshore Ventura Basin, California, p. 254297. In Cram, I. H. (ed.), Future Petroleum Provinces of the United States—Their Geology and Potential, Vol. 1. American Association of Petroleum Geologists Memoir 15.Google Scholar
Natland, M. L. 1938. New species of foraminifera off the west coast of North America and from the later Tertiary of the Los Angeles basin. University of California, Scripps Institution of Oceanography Bulletin, 4:137164.Google Scholar
Natland, M. L. 1952. Pleistocene and Pliocene stratigraphy of southern California. Unpubl. , , Los Angeles, 165 p.Google Scholar
Natland, M. L. 1957. Paleoecology of West Cost Tertiary Sediments, 2:543572. In Ladd, H. S. (ed.), Treatise on Marine Ecology and Paleoecology. Geological Society of America Memoir 67.CrossRefGoogle Scholar
Obradovich, J. D. 1968. The potential use of glauconite for late-Cenozoic Geochronology, p. 267279. In Means of Correlation of Quaternary Successions, 8, Proc. VII, Congress International Association for Quaternary Research, University of Utah Press, Salt Lake City.Google Scholar
Orbigny, A. d'. 1826. Tableau méthodique de la classe des Céphalopodes. Annales des Sciences Naturelles, Paris, France, Sér. 1, 7:96314.Google Scholar
Orbigny, A. d'. 1839a. Voyage dans l'Amérique méridionale; Foraminifères. P. Bertrand, Strasbourg, 5:86 p.Google Scholar
Orbigny, A. d'. 1839b. Foraminiferes des îles Canaries, p. 119146. In Barker-Webb, P. and Berthelot, S., Histoire Naturelle des Îles Canaries, Vol. 2, Pt. 2, Béthune, Paris.Google Scholar
Orbigny, A. d'. 1839c. Foraminifères, p. 1224. In de la Sagra, R., Histoire physique, politique et naturelle de l'île de Cuba. A. Bertrand, Paris.Google Scholar
Orbigny, A. d'. 1846. Foraminifères fossiles du Bassin Tertiaire de Vienne. Gide et Comp, Paris, 303 p.Google Scholar
Patterson, R. T., and Cameron, B. E. B. In press. Paleoenvironmental analysis of foraminifera and ostracode bearing late Quaternary cores from the Fraser River delta, British Columbia. Geological Survey of Canada, Bulletin.Google Scholar
Quinterno, P. J., and Gardner, J. V. 1987. Benthic foraminifers on the continental shelf and upper slope, Russian River area, northern California. Journal of Foraminiferal Research, 17:132152.Google Scholar
Reuss, A. E. 1870. Die Foraminiferen des Septarienthones von Pietzpuhl, p. 445493. In von Schlicht, E. (ed.), Die Foraminiferen des Septarienthones von Pietzpuhl. Könliglichen Akademie der Wissenchaften, Mathematisch-Naturwissenschaftliche Classe, Sitzungsberichte, Wien, Berlin, 62.Google Scholar
Reynolds, L. A., and Thunell, R. C. 1986. Seasonal production and morphologic variation of Neogloboquadrina pachyderma (Ehrenberg) in the northeast Pacific. Micropaleontology, 32:118.Google Scholar
Rhumbler, L. 1936. Foraminiferen der Kieler Bucht, gesammelt durch A. Remane, Teil II—Ammodisculinidae bis einschl. Textulinidae. Kieler Meeresforschungen, Kiel, Deutschland, 1(1936-1937):179242.Google Scholar
Sarna-Wojcicki, A. M., Bowman, H. R., Meyer, C. E., Russell, P. C., Woodward, M. J., McCoy, G., Rowe, J. J. Jr., Baedecker, P. A., Asaro, F., and Michael, H. 1984. Chemical analyses, correlations, and ages of Upper Pliocene and Pleistocene ash layers of east-central and southern California. U.S. Geological Survey Professional Paper 1293, 40 p.Google Scholar
Seguenza, G. 1862. Dei terreni Terziarii del distretto di Messina: Part II—descrizione dei foraminiferi monotalamici delle marne Mioceniche del distretto di Messina. T. Capra, Messina, Italia, p. 134.Google Scholar
Stewart, R. E., and Stewart, K. C. 1930. Post-Miocene foraminifera from the Ventura quadrangle, Ventura County, California. Journal of Paleontology, 4:6072.Google Scholar
Teng, L. S., and Gorsline, D. S. 1989. Late Cenozoic sedimentation in California Continental Borderland basins as revealed by seismic facies analysis. Geological Society of America Bulletin, 101:2741.2.3.CO;2>CrossRefGoogle Scholar
Thalmann, H. E. 1951. Mitteilungen über Foraminiferen IX; 43—Weitere Homonyme bei den Foraminiferen. Eclogae Geologicae Helvetiae, 43:222223.Google Scholar
Uchio, T. 1960. Ecology of living benthonic foraminifera from the San Diego, California, area. Cushman Foundation For Foraminiferal Research Special Publication 5, 72 p.Google Scholar
Valentine, J. W. 1958. Paleoecologic Molluscan Geography of the California Pleistocene. Unpubl. Ph.D. dissertation, University of California, Los Angeles, 458 p.Google Scholar
Vedder, J. G., and Howell, D. G. 1980. Topographic evolution of the southern California Borderland during late Cenozoic time, p. 731. In Power, D. M. (ed.), The California Islands: Proceedings of a Multidisciplinary Symposium. Santa Barbara Museum of Natural History, Santa Barbara, California.Google Scholar
Wiesner, H. 1931. Die Foraminiferen der deutschen Südpolar Expedition 1901-1903. Deutsche Südpolar-Expedition 1901-1903, de Gruyter, W., Berlin und Leipzeig, 20(Zoologie 12):53165.Google Scholar
Williamson, W. C. 1848. On the Recent British species of the genus Lagena . Annals and Magazine of Natural History, 1:120.Google Scholar
Williamson, W. C. 1858. On the Recent foraminifera of Great Britain. Ray Society, London, 107 p.Google Scholar
Woodring, W. P., Bramlette, M. N., and Kew, W. S. W. 1946. Geology and paleontology of Palos Verdes Hills, California. U.S. Geological Survey Professional Paper 207, 145 p.Google Scholar
Young, J. T. 1979. Pliocene-Pleistocene foraminifera from Timms Point, San Pedro and Bathhouse Beach, Santa Barbara, California. Unpubl. , , 120 p.Google Scholar
Young, J. T. 1981. Three new foraminiferal species from Santa Barbara. Journal of Paleontology, 55:903906.Google Scholar
Yule, J. D., and Zenger, D. H. 1987. Late Pleistocene angular unconformity at San Pedro, California. Geological Society of America Centennial Field Guide—Cordilleran Section, p. 175178.Google Scholar