Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T17:27:48.744Z Has data issue: false hasContentIssue false

Ordovician Sphinctozoan Sponges from the Eastern Klamath Mountains, Northern California

Published online by Cambridge University Press:  11 August 2017

J. Keith Rigby
Affiliation:
Department of Geology, Brigham Young University, Provo, Utah 84602
A. W. Potter
Affiliation:
Department of Geology, Oregon State University, Corvallis 97331

Abstract

Extensive silicified faunules of Middle and Late Ordovician sphinctozoan sponges have been assembled from the northern part of the eastern Klamath Mountains in northern California. The sponges are from eugeosynclinal rocks that are the westernmost Middle Ordovician to Late Devonian rocks at that latitude in North America. Seventeen new species occur in the assemblages, including 10 porate and 7 aporate forms. New genera of porate forms are Amblysiphonelloides and Corymbospongia, and new porate species include: Amblysiphonella grossa, Amblysiphonelloides tubula, A. reticulata, Imperatoria mega, I. media, I. minima, I. irregularis, Corymbospongia adnata, C. mica, and C.(?) perforata. These are the first reported occurrences of Amblysiphonella and Imperatoria in the Ordovician. New aporate genera are Cystothalamiella and Porefieldia, and new aporate species include: Cystothalamiella ducta, C. craticula, C. tuboides, Porefieldia robusta, Girtyocoelia epiporata, and G. canna. This is the oldest known occurrence of Girtyocoelia, which is generally considered a Late Paleozoic form. Cliefdenella obconica n. sp. is characterized by an obconical growth form in contrast to other species of the genus that are more massive or explanate. Cliefdenella is considered here as an imperforate sphinctozoan.

Minor isolated hexactines and hexactine-derived spicules of Hexactinellida were associated with the sphinctozoans. No particular taxa within the class can be distinguished from these individual elements.

Type
Research Article
Copyright
Copyright © 1986 by The Paleontological Society, Inc. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergström, S. M. et al. 1980. Biostratigraphic and biogeographic significance of Ordovician conodonts in the eastern Klamath Mountains, northern California. Geological Society of America Abstracts with Programs, 12:219.Google Scholar
Boucot, A. J. 1975. Evolution and Extinction Rate Controls. Elsevier, New York, 427 p.Google Scholar
Boucot, A. J. and Potter, A. W. 1977. Middle Devonian orogeny and biogeographical relations in areas along the North American Pacific rim, p. 210219. In Murphy, M. A., Berry, W. B. N. and Sandberg, C. A. (eds.), Western North America: Devonian. University of California, Riverside Campus Museum Contribution 4.Google Scholar
Burchfiel, B. C. and Davis, G. A. 1975. Nature and controls of Cordilleran orogenesis, western United States: extensions of an earlier synthesis. American Journal of Science, 275-A:363396.Google Scholar
Churkin, M. Jr. 1974. Paleozoic marginal ocean basin-volcanic arc systems in the Cordilleran foldbelt, p. 174192. In Dott, R. H. Jr. and Shaver, R. H. (eds.), Modern and Ancient Geosynclinal Sedimentation. Society of Economic Paleontologists and Mineralogists Special Publication Number 19.Google Scholar
Cossmann, M. 1909. Rectifications de nomenclature. Revue Critique de Paléozoologie, 13:6768.Google Scholar
De Laubenfels, M. W. 1955. Part E, Archaeocyatha and Porifera. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Geological Society of America and University of Kansas Press, Lawrence, 122 p.Google Scholar
Deng, Zhang-Qiu. 1981. Upper Permian Sponges from Laibin of Guangxi. Acta Palaeontologica Sinica, 20(5):418424.Google Scholar
Deng, Zhang-Qiu. 1982. Palaeozoic and Mesozoic Sponges from Southwest China. In Sichuan, W. and Xizang, E., Stratigraphy and Paleontology, part 2, p. 245254.Google Scholar
Dieci, G., Antonacci, A. and Zardini, R. 1970 (1968). Le spugne cassiane (Trias mediosuperiore) della regione dolomitica attorno a Cortina d'Ampezzo. Bolletino della Societa Paleontologica Italiana, 7(2):94155.Google Scholar
Dullo, W. C. and Lein, R. 1980. Das Karn von Launsdorf in Karnten: die Schwamm-Fauna der Leckkogelschichten. Verhandlungen Geologische Bundesanstalt, Wien, Jahrbuch 1980 (2):2591.Google Scholar
Edelstein, T. 1964. On the sublittoral algae of the Haifa Bay area. Vie et Milieu, 15:177212. 177–212.Google Scholar
Elias, R. J. and Potter, A. W. 1984. Late Ordovician solitary rugose corals of the eastern Klamath Mountains, northern California. Journal of Paleontology, 58:12031214.Google Scholar
Finks, R. M. 1967. Phylum Porifera Grant, 1836, p. 333341. In Harland, W. S. (ed.), The Fossil Record, a Symposium with Documentation. Geological Society of London.Google Scholar
Finks, R. M. 1970. The evolution and ecologic history of sponges during Paleozoic times, p. 322. In Fry, W. G. (ed.), The Biology of the Porifera, Symposia of the Zoological Society of London, 25, Academic Press, London.Google Scholar
Finks, R. M. 1983. Pharetronida: Inozoa and Sphinctozoa, p. 5569. In Broadhead, T. W. (ed.), Sponges and Spongiomorphs, Notes for a Short Course, University of Tennessee, Department of Geological Sciences, Studies in Geology 7.Google Scholar
Flügel, E. 1982. Microfacies Analysis of Limestones. Springer-Verlag, New York, 633 p.Google Scholar
Girty, G. H. 1908. The Guadalupian Fauna. U.S. Geological Survey Professional Paper 58, 651 p.CrossRefGoogle Scholar
de Gregorio, A. 1930. Sul Permiano di Sicilia (fossili del calcare con Fusulina di Palazzo Adriano). Annales de Géologie et Paléontologie, 52:170.Google Scholar
Hartman, W. D. 1979. A new sclerosponge from the Bahamas and its relationship to Mesozoic stromatoporoids, p. 467474. In Levi, C. and Boury-Esnault, N. (eds.), Biologie des spongiaires. Colloques Internationaux du Centre National de la Recherche Scientifique, No. 291.Google Scholar
Inai, I. 1936. Discosiphonella, a new ally of Amblysiphonella . Proceedings Imperial Academy of Japan, 12:169171.Google Scholar
Irwin, W. P. 1981. Tectonic accretion of the Klamath Mountains, p. 2949. In Ernst, W. G. (ed.), The Geotectonic Development of California, Rubey Volume I. Prentice-Hall, Inc., New Jersey.Google Scholar
Jones, B., Oldershaw, A. E. and Narbonne, G. M. 1979. Nature and origin of rubbly limestone in the Upper Silurian Read Bay Formation of Arctic Canada. Sedimentary Geology, 24:227252.Google Scholar
Khalfina, V. K. 1968. O novykh rodakh stromatoporoidei iz devonskikh otlozhenii yuz okrainy Kuzbassa i Altaya, p. 147152. In Ivaniya, V. A. (ed.), Novye materialy po stratigrafii i paleontologii nizhnego i srednego paleozoya Zapadnoi Sibiri. Tomskogo Ordena Trudovogo Krasnogo Znameni Gosudarstvennogo Universiteta im. V. V. Kuibysheva, Seriya geologicheskaya, Trudy, Vol. 202.Google Scholar
Khalfina, V. K. and Yavorsky, G. I. 1974. K evolutzii stromatoporoidei, p. 3854. In Sokolov, B. S. (ed.), Drevniye Cnidaria, volume 1, Nauka, Novosibirsk.Google Scholar
King, R. H. 1933. A Pennsylvanian sponge fauna from Wise County, Texas. University of Texas Bulletin, 3201:7587.Google Scholar
King, R. H. 1943. New Carboniferous and Permian sponges. Kansas State Geological Survey Bulletin, 47(1):136.Google Scholar
Lindsley-Griffin, N. and Rohr, D. M. 1977. Lovers Leap: a geologic puzzle, p. 4769. In Lindsley-Griffin, N. and Kramer, J. C. (eds.), Geology of the Klamath Mountains, northern California. Geological Society of America, Cordilleran Section, Guidebook, Sacramento.Google Scholar
Logan, B. W. and Semeniuk, V. 1976. Dynamic metamorphism; processes and products in Devonian carbonate rocks, Canning Basin, Western Australia. Geological Society of Australia Special Publication No. 6, 138 p.Google Scholar
Milne-Edwards, H. and Haime, J. 1851. Monographie des Polyplers fossiles des Terraines Paléozoiques, Monographie précedée d'un tableau géneral de la classification des Polypes. Archives du Muséum d'Histoire Naturelle, Paris, 5, 502 p.Google Scholar
Ott, E. 1967. Segmentierte Kalkschwämme (Sphinctozoa) aus der alpinen Mitteltrias undihre Bedeutung als Riffbildner im Wettersteinkalk. Bayerische Akademie der Wissenschaften Mathematisch-Physikalischen Klasse, N.F., 131:196.Google Scholar
Ott, E. 1974. Phragmocoelia n. g. (Sphinctozoa), ein segmentierter Kalkschwamm mit neuem Fullgewebetyp aus der alpinen Trias. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 12:712723.Google Scholar
Parona, C. F. 1933. Le spugne della fauna permiana di Palazzo Adriano (Bacino di Sosio) in Sicilia. Societa Geologica Italiana, Memorie, 1:158.Google Scholar
Pickett, J. W. 1982. Vaceletia progenitor, the first Tertiary sphinctozoan (Porifera). Alcheringa, 6:241247.CrossRefGoogle Scholar
Pickett, J. W. and Jell, P. A. 1983. Middle Cambrian Sphinctozoa (Porifera) from New South Wales. Memoirs of the Association of Australasian Palaeontologists, 1:8592.Google Scholar
Pickett, J. W. and Rigby, J. K. 1983. Sponges of the Early Devonian Garra Formation, New South Wales. Journal of Paleontology, 57:720741.Google Scholar
Pomel, A. 1872. Paléontologie ou description des animaux fossiles de la Province d'Oran, Zoophytes 5e Fascicule-Spongiaires, Oran, 256 p.Google Scholar
Potter, A. W. and Cecile, M. P. 1985. Paleobiogeographic significance of two Late Ordovician brachiopod faunules from the Misty Creek Embayment, Selwyn Basin, Northwest Territories, Canada. Geological Society of America Abstracts with Programs, 17:401.Google Scholar
Potter, A. W. et al. 1980. Middle and Upper Ordovician brachiopods from Alaska and northern California and their paleogeographic implications. Geological Society of America Abstracts with Programs, 12:147.Google Scholar
Potter, A. W., Hotz, P. E. and Lanphere, M. 1981. Evidence of Ordovician–Silurian subduction and Silurian or older igneous units of possible magmatic arc origin, eastern Klamath Mountains, northern California. Geological Society of America Abstracts with Programs, 13:101.Google Scholar
Potter, A. W., Hotz, P. E., and Rohr, D. M. 1977. Stratigraphy and inferred tectonic framework of Lower Paleozoic rocks in the eastern Klamath Mountains, northern California, p. 421440. In Stewart, J. H., Stevens, C. H. and Fritsche, A. E. (eds.), Paleozoic Paleogeography of the Western United States. Society of Economic Paleontologists and Mineralogists, Pacific Section, Pacific Coast Paleogeography Symposium 1.Google Scholar
Potter, A. W. et al. 1975. Magma types present in Paleozoic keratophyres and spilites from the Gazelle area, eastern Klamath Mountains, northern California. Geological Society of America Abstracts with Programs, 7:1231.Google Scholar
Rauff, H. 1938. Über einige Kalkschwämme aus der Trias der peruanischen Kordillere nebst einem Anhang über Stellispongia und ihre Arten. Palaeontologische Zeitschrift, 20:177214.CrossRefGoogle Scholar
Rigby, J. K. 1984. Permian sponges from western Venezuela. Journal of Paleontology, 58(6):14361462.Google Scholar
Rigby, J. K. and Blodgett, R. B. 1983. Early Middle Devonian sponges from the McGrath quadrangle of west-central Alaska. Journal of Paleontology, 57:773786.Google Scholar
Rigby, J. K. and Potter, A. W. 1980. Ordovician sphinctozoan sponges from the Klamath Mountains, California, the first known early Paleozoic occurrence. Geological Society of America Abstracts with Programs, 12:509.Google Scholar
Rigby, J. K. and Webby, B. D. 1984. Endemic faunas or unsampled island-arc slope facies: Middle and Late Ordovician sponge faunas of east-central New South Wales, Australia. Geological Society of America Abstracts with Programs, 16:634.Google Scholar
Rohr, D. M. 1980. Ordovician–Devonian Gastropoda from the Klamath Mountains, California. Palaeontographica Abteilung A, 171:141199.Google Scholar
Seilacher, A. 1962. Die Sphinctozoa, eine Gruppe fossiler Kalkschwamme. Akademie der Wissenschaften und der Literatur in Mainz, Abhandlungen der Wissenschaften Mathematisch-Physikalischen Klasse, 1961:721790.Google Scholar
Senowbari-Daryan, B. 1980. Neue Kalkschwämme (Sphinctozoen) aus obertriadischen Riffkalken von Sizilien. Mitteilung Gesellschaft Geologische Bergbaustudieren, Osterreich, 26:179203.Google Scholar
Senowbari-Daryan, B. and Schafer, P. 1983. Zur Sphinctozoan-Fauna der obertriadischen Riffkalke (“Pantokratorkalke”) von Hydra, Griechenland. Geologica et Palaeontologica, 17:179205.Google Scholar
Steinmann, G. 1882. Pharetronen-Studien. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, p. 139191.Google Scholar
Stock, C. W. 1981. Cliefdenella alaskaensis n. sp. (Stromatoporoidea) from the Middle/Upper Ordovician of central Alaska. Journal of Paleontology, 55(5):9981005.Google Scholar
Stock, C. W. 1983. The function of tube-pillars in the Ordovician stromatoporoid Cliefdenella inferred by analogy with the recent sclerosponge Calcifibrospongia . Paleontographica Americana, Number 54, p. 349353.Google Scholar
Termier, H. and Termier, G. 1955. Contribution à l'étude des Spongiaires permiens du Djebel Tebaga (Extrême Sud Tunisien). Bulletin Société Géologique du France, (6)5:613630.Google Scholar
Termier, H. and Termier, G. 1977. Structure et évolution des spongiaires hypercalcifiés de Paléozoique supérieur. Memoir Institut Géologique Université Catholique de Louvain, 29:57109.Google Scholar
Termier, H. and Termier, G. and Vachard, D. 1977. Monographie paléontologique des affleurements Permiens du Djebel Tebaga (Sud Tunisien). Palaeontographica, Abteilung A, 156:1109.Google Scholar
Vacelet, J. 1977. Une nouvelle relique du Secondaire: un représentant actuel des Eponges fossiles sphinctozoaires. Comptes rendue Académie des Sciences de Paris, 285:509511.Google Scholar
De Regny, P. Vinassa 1901. Trias Spongien aus dem Bakony. Resultate der wissenschaftlichen Erforschung des Balatonsees, 1 (Paläontologische Anhang): 122, Budapest.Google Scholar
Webby, B. D. 1969. Ordovician stromatoporoids from New South Wales. Palaeontology, 12:637662.Google Scholar
Webby, B. D. and Morris, D. G. 1976. New Ordovician stromatoporoids from New South Wales. Royal Society of New South Wales, Journal and Proceedings, 109:125135.Google Scholar
Webby, B. D. and Rigby, J. K. 1985. Ordovician sphinctozoan sponges from central New South Wales. Alcheringa, 9:209220.Google Scholar
Wendt, J. W. 1980. Calcareous sponges, 3.1. Development through time, p. 169178. In Hartman, W. D., Wendt, J. W. and Wiedenmeyer, F., Living and Fossil Sponges, Sedimenta VIII, University of Miami, Florida.Google Scholar
Ziegler, B. and Rietschel, S. 1970. Phylogenetic relationships of fossil calcisponges, p. 2340. In Fry, W. G. (ed.), The Biology of the Porifera, Symposia of the Zoological Society of London, 25, Academic Press, London.Google Scholar