No CrossRef data available.
Published online by Cambridge University Press: 14 July 2015
The reticuloceratid ammonoid Arkanites relictus (Quinn, McCaleb, and Webb, 1962) is represented by hundreds to thousands of individuals from horizons isolated both stratigraphically and geographically in northern Arkansas. These assemblages appear to represent mass mortality events resulting from a semelparous reproductive strategy. Arkanites relictus occurs as a dimorphic pair (depressed, widely umbilicate, cadiconic conchs and compressed, narrowly umbilicate, pachyconic conchs) thought to reflect sexual dimorphism. Late stage ontogenetic modifications, such as septal crowding and change in aperture profile, are widely cited evidence of sexual maturity in ammonoids. Septal crowding begins at a predictable ontogenetic stage in the compressed forms of A. relictus, but specimens with cadiconic conchs do not have crowded septa even at the largest diameters available.
Depending on the trait examined and the proxy for age of individuals, the dimorphism in Arkanites relictus (using the depressed form as the reference morph) is the result of acceleration, neoteny, or hypermorphosis plus neoteny. If size (diameter) is considered a proxy for age, the dimorphs were the same age at death, and the septa in the compressed variants developed via acceleration relative to the depressed variants. Regarding conch shape (width vs. diameter), the compressed morphs developed via neoteny relative to the depressed morphs. If septal count is considered a proxy for age, the dimorphs were not the same age at death, and the compressed forms were produced by a combination of hypermorphosis plus neoteny, i.e., they grew longer yet slower than the depressed forms. In A. relictus, the heterochronic processes of hypermorphosis and neoteny may have been operating simultaneously, which is an interesting possibility because it is an example of a combination of both peramorphic and paedomorphic processes.
Present address: Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907, <[email protected]>