Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T18:53:38.736Z Has data issue: false hasContentIssue false

Ontogeny and geographic variation of a new species of the corynexochine trilobite Zacanthopsis (Dyeran, Cambrian)

Published online by Cambridge University Press:  14 July 2015

Melanie J. Hopkins
Affiliation:
1Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Ave, Chicago, Illinois 60637 1 and 2
Mark Webster
Affiliation:
1Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Ave, Chicago, Illinois 60637 1 and 2

Abstract

Assessment of ontogenetic and geographic variation can have substantial influence on species delimitation and thereby on perceived patterns of species-level morphological variation and diversity in space and time. Here we describe the ontogeny and intraspecific variation of the early Cambrian trilobite, Zacanthopsis palmeri n. sp., based on silicified material from east-central Nevada, USA. Zacanthopsis palmeri is the oldest documented Cambrian corynexochine to shift from possessing a fused rostal-hypostomal plate to a functional hypostomal suture in mature specimens during ontogeny. Six geographically distinct samples of mature Z. palmeri from a single silicified limestone bed traceable over tens of kilometers in east-central Nevada permit exploration of geographic variation within this species using geometric morphometric methods. No one sample encompasses all of the shape variation expressed by Z. palmeri and several geographically segregated samples show some degree of morphological separation in pairwise comparison. Nonetheless, these samples are not qualitatively or quantitatively different from one another when all samples are taken into account. The degree of variation within Z. palmeri is similar in magnitude to the differences between other species in the genus known from much less material.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrain, J. M. and Westrop, S. R. 2005. Late Cambrian ptychaspidid trilobites from western Utah: implications for trilobite systematics and biostratigraphy. Geological Magazine, 142:377398.CrossRefGoogle Scholar
Adrain, J. M. and Westrop, S. R. 2006. Notchpeakia, a new genus of Upper Cambrian (Sunwaptan) “entomaspidid” trilobites. Journal of Paleontology, 80:11521171.CrossRefGoogle Scholar
Avise, J. C. 2000. Phylogeography. Harvard University Press, Cambridge, Massachusetts, 447 p.CrossRefGoogle ScholarPubMed
Best, R. V. 1961. Intraspecific variation in Encrinurus ornatus. Journal of Paleontology, 35:10291040.Google Scholar
Blaker, M. R. and Peel, J. S. 1997. Lower Cambrian trilobites from North Greenland. Meddelelser om Grönland, Geoscience, Vol. 35, 145 p.Google Scholar
Bookstein, F. L. 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge, 435 p.Google Scholar
Chatterton, B. D. E. and Speyer, S. E. 1997. Ontogeny, p. 173247. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology. Pt. O. Arthropoda 1, Trilobita, Revised, 1. Geological Society of America and University of Kansas Lawrence Press, Lawrence.Google Scholar
Cisne, J. L., Chandlee, G. O., Rabe, B. D., and Cohen, J. A. 1980a. Geographic variation and episodic evolution in an Ordovician trilobite. Science, 209:925927.CrossRefGoogle Scholar
Cisne, J. L., Chandlee, G. O., Rabe, B. D., and Cohen, J. A. 1982. Clinal variation, episodic evolution, and possible parapatric speciation: the trilobite Flexicalymene senaria along an Ordovician depth gradient. Lethaia, 15:325341.CrossRefGoogle Scholar
Cisne, J. L., Molenock, J., and Rabe, B. D. 1980b. Evolution in a cline: the trilobite Triarthrus along an Ordovician depth gradient. Lethaia, 13:4759.CrossRefGoogle Scholar
Davis, J. I. and Nixon, K. C. 1992. Populations, genetic variation, and the delimitation of phylogenetic species. Systematic Biology, 43:421435.CrossRefGoogle Scholar
Eddy, J. D. and McCollum, L. B. 1998. Early Middle Cambrian Albertella biozone trilobites of the Pioche Shale, southeastern Nevada. Journal of Paleontology, 72:864887.CrossRefGoogle Scholar
Foote, M. 1993. Contributions of individual taxa to overall morphological disparity. Paleobiology, 19:403419.CrossRefGoogle Scholar
Fortey, R. A. 1990. Ontogeny, hypostome attachment, and trilobite classification. Palaeontology, 33:529576.Google Scholar
France, S. C. 1993. Geographic variation among three isolated populations of the hadal amphipod Hirondellea gigas (Crustacea: Amphipoda: Lysianassoidea). Marine Ecology Progress Series, 92:277287.CrossRefGoogle Scholar
Fritz, W. H. 1972. Lower Cambrian trilobites from the Sekwi Formation type section, Mackenzie Mountains, Northwestern Canada. Geological Survey of Canada Bulletin 212, 58 p.CrossRefGoogle Scholar
Fritz, W. H. 1991. Lower Cambrian trilobites from the Illtyd Formation, Wernecke Mountains, Yukon Territory. Geological Survey of Canada Bulletin 409, 77 p.CrossRefGoogle Scholar
Hu, C.-H. 1971. Ontogeny and sexual dimorphism of Lower Paleozoic Trilobita. Palaeontographica Americana, 7:31155.Google Scholar
Hu, C.-H. 1985a. Ontogenetic development of Cambrian trilobites from British Columbia and Alberta, Canada (Pt. I). Journal of the Taiwan Museum, 38:121158.Google Scholar
Hu, C.-H. 1985b. Ontogenies of two middle Cambrian corynexochid trilobites from the Canadian Rocky Mountains. Transactions and Proceedings of the Palaeontological Society of Japan, new series, 138:138147.Google Scholar
Hughes, N. C. 1991. Morphological plasticity and genetic flexibility in a Cambrian trilobite. Geology, 19:913916.2.3.CO;2>CrossRefGoogle Scholar
Hughes, N. C. 1993. Distribution, taphonomy, and functional morphology of the Upper Cambrian trilobite Dikelocephalus. Milwaukee Public Museum Contributions in Biology and Geology 84, 49 p.Google Scholar
Hughes, N. C. 1994. Ontogeny, intraspecific variation, and systematics of the Late Cambrian trilobite Dikelocephalus. Smithsonian Contributions to Paleobiology 79, 89 p.Google Scholar
Hughes, N. C., and Chapman, R. E. 1995. Growth and variation in the Silurian trilobite Aulacopleura konincki and its implications for trilobite palaeobiology. Lethaia, 28:333353.CrossRefGoogle Scholar
Hunda, B. R., Hughes, N. C., and Flessa, K. W. 2006. Trilobite taphonomy and temporal resolution in the Mt. Orab shale bed (Upper Ordovician, Ohio, U.S.A.). Palaios, 21:2645.CrossRefGoogle Scholar
Kim, K., Sheets, H. D., Haney, R. A., and Mitchell, C. E. 2002. Morphometric analysis of ontogeny and allometry of the Middle Ordovician trilobite Triarthrus becki. Paleobiology, 28:364377.2.0.CO;2>CrossRefGoogle Scholar
Kim, K., Sheets, H. D., and Mitchell, C. E. 2009. Geographic and stratigraphic change in the morphology of Triarthrus beckii (Green) (Trilobita): A test of the Plus ça change model of evolution. Lethaia, 42:108125.CrossRefGoogle Scholar
Kobayashi, T. 1935. The Cambro-Ordovician formations and faunas of South Chosen. Palentology. Part 3: Cambrian faunas of South Chosen with a special study on the Cambrian trilobite genera and families. Journal of the Faculty of Science, Imperial University of Tokyo, Section II, 4:49344.Google Scholar
Lee, D.-C. and Chatterton, B. D. E. 2003. Protaspides of Leiostegium and their implications for membership of the order Corynexochida. Palaeontology, 46:431445.CrossRefGoogle Scholar
Lieberman, B. S. 1998. Cladistic analysis of the Early Cambrian olenelloid trilobites. Journal of Paleontology, 72:5978.CrossRefGoogle Scholar
Merriam, C. W. 1964. Cambrian rocks of the Pioche Mining District. U.S. Geological Survey Professional Paper 469, 59 p.Google Scholar
Nixon, K. C. and Wheeler, Q. D. 1990. An amplification of the phylogenetic species concept. Cladistics, 6:211223.CrossRefGoogle Scholar
Owen, D. D. 1852. Report of the Geological Survey of Wisconsin, Iowa, and Minnesota. Lippencott, Grambo and Co., Philadelphia, 638 p.Google Scholar
Palmer, A. R. 1958. Morphology and ontogeny of a Lower Cambrian ptychoparioid trilobite from Nevada. Journal of Paleontology, 32:154170.Google Scholar
Palmer, A. R. 1964. An unusual Lower Cambrian trilobite fauna from Nevada. U.S. Geological Survey Professional Paper, 483-F, 13 p.CrossRefGoogle Scholar
Palmer, A. R. 1965. Trilobites of the Late Cambrian Pterocephaliid biomere in the Great Basin, United States. U.S. Geological Survey Professional Paper, 493, 105 p.Google Scholar
Palmer, A. R. 1968. Cambrian trilobites of east-central Alaska. U.S. Geological Survey Professional Paper, 559-B, 115 p.CrossRefGoogle Scholar
Palmer, A. R. 1971. The Cambrian of the Great Basin and adjacent areas, western United States, p. 178. In Holland, C. H. (ed.), Cambrian of the New World. Wiley-Interscience, New York.Google Scholar
Palmer, A. R. 1998. Terminal Early Cambrian extinction of the Olenellina: Documentation from the Pioche Formation, Nevada. Journal of Paleontology, 72:650672.CrossRefGoogle Scholar
Peng, S., Babcock, L. E., and Lin, H. 2004. Polymerid trilobites from the Cambrian of Northwestern Hunan, China. Volume 1: Corynexochida, Lichida, and Asaphida. Science Press, Beijing, 333 p.Google Scholar
Rasband, W. S. 2006. ImageJ 1.36b. U.S. National Institutes of Health, Bethesda, Maryland.Google Scholar
Rasetti, F. 1951. Middle Cambrian stratigraphy and faunas of the Canadian Rocky Mountains. Smithsonian Miscellaneous Collections 116, 277 p.Google Scholar
Rasetti, F. 1967. Lower and Middle Cambrian trilobite faunas from the Taconic Sequence of New York. Smithsonian Miscellaneous Collections 152, 111 p.Google Scholar
Resser, C. E. 1938. Cambrian system (restricted) of the southern Appalachians. Geological Society of America Special Papers 15, 140 p.Google Scholar
Resser, C. E. 1939. The Ptarmigania strata of the northern Wasatch Mountains. Smithsonian Miscellaneous Collections 24, 72 p.Google Scholar
Riska, B. 1981. Morphological variation in the horseshoe crab Limulus polyphemus. Evolution, 35:647658.Google ScholarPubMed
Robison, R. A. 1964. Late Middle Cambrian faunas from western Utah. Journal of Paleontology, 38:510566.Google Scholar
Robison, R. A. 1967. Ontogeny of Bathyuriscus fimbriatus and its bearing on affinities of corynexochid trilobites. Journal of Paleontology, 41:213221.Google Scholar
Rohlf, F. J. 1990. Rotational fit (Procrustes) methods, p. 227236. In Rohlf, F. J. and Bookstein, F. L. (eds.), Proceedings of the Michigan Morphometrics Workshop, University of Michigan Special Publication 2.Google Scholar
Rushton, A. W. A. and Hughes, N. C. 1996. Biometry, systematics, and biogeography of the late Cambrian trilobite Maladioidella abdita. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87:110.Google Scholar
Shaw, A. B. 1957. Quantitative trilobite studies II. Measurement of the dorsal shell of non-agnostidean trilobites. Journal of Paleontology, 31:193207.Google Scholar
Sheets, H. D. 2003. Integrated Morphometrics Package. Canisius College, Buffalo, New York.Google Scholar
Smith, L. H. 1995. The role of species level phenotypic and developmental variability in the early evolution of animals. Unpublished Ph.D. dissertation, Harvard University, Cambridge, Massachusetts, 201 p.Google Scholar
Smith, L. H. 1998a. Asymmetry of Early Paleozoic trilobites. Lethaia, 31:99112.CrossRefGoogle Scholar
Smith, L. H. 1998b. Species level phenotypic variation in lower Paleozoic trilobites. Paleobiology, 24:1736.CrossRefGoogle Scholar
Sundberg, F. A. 1999. Redescription of Alokistocare subcoronatum (Hall and Whitfield, 1877), the type species of Alokistocare, and the status of Alokistocaridae Resser, 1939B (Ptychopariida: Trilobita: Middle Cambrian). Journal of Paleontology, 73:11261143.CrossRefGoogle Scholar
Sundberg, F. A. 2004. Cladistic analysis of Early-Middle Cambrian kochaspid trilobites (Ptychopariida). Journal of Paleontology, 78:920940.2.0.CO;2>CrossRefGoogle Scholar
Sundberg, F. A. AND, McCollum, L. B. 1997. Oryctocephalids (Corynexochida: Trilobita) of the Lower-Middle Cambrian boundary interval from California and Nevada. Journal of Paleontology, 71:10651090.CrossRefGoogle Scholar
Sundberg, F. A. and McCollum, L. B. 2000. Ptychopariid trilobites of the Lower-Middle Cambrian boundary interval, Pioche Shale, southeastern Nevada. Journal of Paleontology, 74:604630.2.0.CO;2>CrossRefGoogle Scholar
Swinnerton, H. H. 1915. Suggestions for a revised classification of trilobites. Geological Magazine, 6:487496, 538–545.CrossRefGoogle Scholar
Taylor, M. E. and Halley, R. B. 1974. Systematics, environment, and biogeography of some Late Cambrian and Early Ordovician trilobites from eastern New York State. U.S. Geological Survey Professional Paper 834, 38 p.CrossRefGoogle Scholar
Walcott, C. D. 1886. Second contribution to the studies on Cambrian faunas of North America. U.S. Geological Survey Bulletin 30, 369 p.CrossRefGoogle Scholar
Walcott, C. D. 1916. Cambrian Geology and Paleontology III. No. 5, Cambrian Trilobites. Smithsonian Miscellaneous Collections, 64:303456.Google Scholar
Walcott, C. D. 1924. Cambrian geology and paleontology V. No. 2, Cambrian and Ozarkian trilobites. Smithsonian Miscellaneous Collections, 75:5360.Google Scholar
Webber, A. J. and Hunda, B. R. 2007. Quantitatively comparing morphological trends to environment in the fossil record (Cincinnatian Series, Upper Ordovician). Evolution, 61:14551465.CrossRefGoogle ScholarPubMed
Webster, M. 2003. Olenelloid trilobites of the southern Great Basin, U.S.A., and a refinement of uppermost Dyeran biostratigraphy. Geological Society of America, Abstracts with Programs, 35:166.Google Scholar
Webster, M. 2007a. Ontogeny and evolution of the Early Cambrian trilobite genus Nephrolenellus (Olenelloidea). Journal of Paleontology, 81:11681193.CrossRefGoogle Scholar
Webster, M. 2007b. Paranephrolenellus, a new genus of Early Cambrian olenelloid trilobite. Memoirs of the Association of Australasian Palaeontologists, 34:3159.Google Scholar
Webster, M., Gaines, R. R., and Hughes, N. C. 2008. Microstratigraphy, trilobite biostratigraphy, and depositional environment of the “Lower Cambrian” Ruin Wash Lagerstatte, Pioche Formation, Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology, 264:100122.CrossRefGoogle Scholar
Webster, M. and Hughes, N. C. 1999. Compaction-related deformation in Cambrian olenelloid trilobites and its implications for fossil morphometry. Journal of Paleontology, 73:355371.CrossRefGoogle Scholar
Webster, M., Sheets, H. D., and Hughes, N. C. 2001. Allometric patterning in trilobite ontogeny: testing for heterochrony in Nepholenellus, p. 105144. In Zelditch, M. L. (ed.), Beyond Heterochrony: the evolution of development. Wiley-Liss, Inc., New York.Google Scholar
Webster, M. and Zelditch, M. L. 2005. Evolutionary modifications of ontogeny: heterochrony and beyond. Paleobiology, 31:354372.CrossRefGoogle Scholar
Westrop, S. R. and Adrain, J. M. 2007. Bartonaspis new genus, a trilobite species complex from the base of the Upper Cambrian Sunwaptan Stage in North America. Canadian Journal of Earth Sciences, 44:9871003.CrossRefGoogle Scholar
Westrop, S. R., Ludvigsen, R., and Kindle, C. H. 1996. Marjuman (Cambrian) agnostoid trilobites of the Cow Head Group, western Newfoundland. Journal of Paleontology, 70:804829.CrossRefGoogle Scholar
Wheeler, Q. D. and Meier, R. 2000. Species Concepts and Phylogenetic Theory. Columbia University Press, New York, 230 p.Google Scholar
Whittington, H. B. 1988. Hypostomes and ventral cephalic sutures in Cambrian trilobites. Palaeontology, 31:577609.Google Scholar
Whittington, H. B. 2009. The Corynexochina (Trilobita): a poorly understood suborder. Journal of Paleontology, 83:18.CrossRefGoogle Scholar
Whittington, H. B. and Kelly, S. R. A. 1997. Morphological terms applied to Trilobita, p. 313329. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology, Part O, Arthropoda 1, Trilobita, Revised, 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Zelditch, M. L. 2005. Developmental regulation of variation, p. 249276. In Hallgrimsson, B. and Hall, B. K. (eds.), Variation: a central concept in biology. Elsevier Academic Press, New York.CrossRefGoogle Scholar
Zelditch, M. L., Swiderski, D. L., Sheets, H. D., and Fink, W. L. 2004. Geometric Morphometrics for Biologists. Elsevier Academic Press, New York, 443 p.Google Scholar