Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T21:01:52.212Z Has data issue: false hasContentIssue false

Ontogeny and evolution of the Early Cambrian trilobite genus Nephrolenellus (Olenelloidea)

Published online by Cambridge University Press:  14 July 2015

Mark Webster*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637,

Abstract

The cephalon of Nephrolenellus multinodus and its stratigraphically higher sister-taxon N. geniculatus passed through the same four successive phases of development: entry into phase 2 is defined by a change from a decrease to an increase in the dynamic pattern of distance between the intergenal spine bases relative to cephalic length; entry into phase 3 is defined by the appearance of genal spines; and entry into phase 4 is defined by the effective isolation of glabellar furrow S3 from the axial furrow. Phase transitions were associated with significant changes in allometric growth patterns of the cephalon. Five instars are identified within the early development (phases 1 and 2) of N. multinodus. Despite the general similarity in cephalic ontogeny, significant interspecific differences in patterns of shape change are documented throughout phases 1, 2, and 3 of cephalic development which, with differences in rates of glabellar shape change relative to size (higher in N. multinodus) and ontogenetic loss of glabellar axial nodes (higher in N. geniculates), demonstrate that evolutionary modification to ontogeny was mosaic and complex. Stratigraphic occurrences and a temporal trend towards increased rate of glabellar axial node loss relative to size in N. geniculates are consistent with a hypothesis that N. geniculates was a direct descendant of N. multinodus. However, ontogenetic data are needed for immediate outgroups of Nephrolenellus to determine whether two potential autapomorphies of N. multinodus, which refute such a hypothesis, are indeed unique to this taxon. Nephrolenellus jasperensis is recognized as a junior synonym of N. multinodus.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrain, J. M. 2005. Aulacopleurid trilobites from the Upper Ordovician of Virginia. Journal of Paleontology, 79:542563.2.0.CO;2>CrossRefGoogle Scholar
Adrain, J. M. and Westrop, S. R. 2006. New earliest Ordovician trilobite genus Millardicurus: the oldest known hystricurid. Journal of Paleontology, 80:650671.CrossRefGoogle Scholar
Beecher, C. E. 1895. The larval stages of trilobites. American Geologist, 16:166197.Google Scholar
Bohach, L. L. 1997. Systematics and biostratigraphy of Lower Cambrian trilobites of western Laurentia. Unpublished , , 491 p.Google Scholar
Bookstein, F. L. 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, New York, 435 p.Google Scholar
Chatterton, B. D. E. and Speyer, S. E. 1997. Ontogeny. p. 173247. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology, Pt. O, Arthropoda 1, Trilobita, Revised, Volume. 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Clausen, S. 2004. Paedomorphic patterns of the Cambrian genus Alueva (Trilobita, Ellipsocephalidae) from the Iberian Chains (NE Spain). Geobios, 37:336345.CrossRefGoogle Scholar
Crônier, C. and Fortey, R. A. 2006. Morphology and ontogeny of an Early Devonian phacopid trilobite with reduced sight from southern Thailand. Journal of Paleontology, 80:529536.CrossRefGoogle Scholar
Crônier, C., Feist, R., and Auffrey, J.-C. 2004. Variation in the eye of Acuticryphops (Phacopina, Trilobita) and its evolutionary significance: a biometric and morphometric approach. Paleobiology, 30:471481.2.0.CO;2>CrossRefGoogle Scholar
Dryden, I. L. and Mardia, K. V. 1998. Statistical Shape Analysis. John Wiley and Sons, New York, 347 p.Google Scholar
Emmons, E. 1844. The Taconic System; based on observations in New-York, Massachusetts, Maine, Vermont and Rhode-Island. Carroll and Cooke, Printers, Albany, New York.Google Scholar
Fortey, R. A. 2001. Trilobite systematics: The last 75 years. Journal of Paleontology, 75:11411151.2.0.CO;2>CrossRefGoogle Scholar
Fortey, R. A. and Owens, R. M. 1997. Evolutionary history, p. 249287. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology. Pt. O. Arthropoda 1. Trilobita, Revised. Volume. 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Fortey, R. A. and Whittington, H. B. 1989. The Trilobita as a natural group. Historical Biology, 2:125138.CrossRefGoogle Scholar
Fowler, E. 1999. Biostratigraphy of upper Dyeran strata of the Carrara Formation, Emigrant Pass, Nopah Range, California, p. 4650. In Palmer, A. R. (ed.), Laurentia 99: V Field Conference of the Cambrian Stage Subdivision Working Group. International Subcommission on Cambrian Stratigraphy. Utah, Nevada, California, U.S.A., September 12-22, 1999. Institute for Cambrian Studies, Boulder, Colorado.Google Scholar
Fusco, G., Hughes, N. C., Webster, M., and Minelli, A. 2004. Exploring developmental modes in a fossil arthropod: growth and trunk segmentation of the trilobite Aulacopleura konincki. American Naturalist, 163:167183.CrossRefGoogle Scholar
Harrington, H. J. 1956. Olenellidae with advanced cephalic spines. Journal of Paleontology, 30:5661.Google Scholar
Hazzard, J. C. 1933. Notes on the Cambrian rocks of the eastern Mohave Desert, California. Bulletin of the Department of Geological Sciences, University of California, 23:5780.Google Scholar
Hughes, N. C. 1994. Ontogeny, intraspecific variation, and systematics of the Late Cambrian trilobite Dikelocephalus. Smithsonian Contributions to Paleobiology, 79. 89p.Google Scholar
Hughes, N. C. 2003. Trilobite tagmosis and body patterning from morphological and developmental perspectives. Integrative and Comparative Biology, 43:185206.CrossRefGoogle ScholarPubMed
Hughes, N. C. and Chapman, R. E. 1995. Growth and variation in the Silurian proetide trilobite Aulacopleura konincki and its implications for trilobite paleobiology. Lethaia, 28:333353.CrossRefGoogle Scholar
Hughes, N. C., Chapman, R. E., and Adrain, J. M. 1999. The stability of thoracic segmentation in trilobites: a case study in developmental and ecological constraints. Evolution and Development, 1:2435.CrossRefGoogle ScholarPubMed
Hunt, G. and Chapman, R. E. 2001. Evaluating hypotheses of instar-grouping in arthropods: a maximum likelihood approach. Paleobiology, 27:466484.2.0.CO;2>CrossRefGoogle Scholar
Jell, P. A. 2003. Phylogeny of Early Cambrian trilobites. Special Papers in Palaeontology, 70:4557.Google Scholar
Kim, K., Sheets, H. D., Haney, R. A., and Mitchell, C. E. 2002. Morphometric analysis of ontogeny and allometry of the Middle Ordovician trilobite Triarthrus becki. Paleobiology, 28:364377.2.0.CO;2>CrossRefGoogle Scholar
Lauterbach, von K.-E. 1983. Synapomorphien zwischen Trilobiten- und Cheliceratenzweig der Arachnata. Zool. Anz., Jena, 210:213238.Google Scholar
Lieberman, B. S. 1998. Cladistic analysis of the Early Cambrian olenelloid trilobites. Journal of Paleontology, 72:5978.CrossRefGoogle Scholar
Lieberman, B. S. 1999. Systematic revision of the Olenelloidea (Trilobita, Cambrian). Bulletin of the Peabody Museum of Natural History, Yale University, 35:1150.Google Scholar
Lieberman, B. S. 2001. Phylogenetic analysis of the Olenellina Walcott, 1890 (Trilobita, Cambrian). Journal of Paleontology, 75:96115.2.0.CO;2>CrossRefGoogle Scholar
Lieberman, B. S. 2002. Phylogenetic analysis of some basal Early Cambrian trilobites, the biogeographic origins of the Eutrilobita, and the timing of the Cambrian Radiation. Journal of Paleontology, 76:692708.2.0.CO;2>CrossRefGoogle Scholar
Lieberman, B. S. 2003. Biogeography of the Trilobita during the Cambrian radiation: deducing geological processes from trilobite evolution. Special Papers in Palaeontology, 70:5972.Google Scholar
Lochman, C. 1952. Trilobites, p. 60184. In Cooper, G. A., Arellano, A. R. V., Johnson, J. H., Okulitch, V. J., Stoyanow, A., and Lochman, C. (eds.), Cambrian stratigraphy and paleontology near Caborca, northwestern Sonora, Mexico. Smithsonian Miscellaneous Collections, 119 (1).Google Scholar
Longwell, C. R. 1928. Geology of the Muddy Mountains, Nevada, with a section through the Virgin Range to the Grand Wash Cliffs, Arizona. U. S. Geological Survey Bulletin 798, 152 p.Google Scholar
Mathworks, . 2000. MATLAB6. The Mathworks, Natick, Massachusetts.Google Scholar
Mccormick, T. and Fortey, R. A. 1999. The most widely distributed trilobite species: Ordovician Carolinites genacinaca. Journal of Paleontology, 73:202218.CrossRefGoogle Scholar
Mccormick, T. and Fortey, R. A. 2002. The Ordovician trilobite Carolinites, a test case for microevolution in a macrofossil lineage. Palaeontology, 45:229257.CrossRefGoogle Scholar
McKee, E. D. 1945. Cambrian history of the Grand Canyon Region. Carnegie Institution of Washington Publication, 563. 232 p.Google Scholar
McLain, D. H. 1974. Drawing contours from arbitrary data points. The Computer Journal, 17:318324.CrossRefGoogle Scholar
McNamara, K. J. 1986. The role of heterochrony in the evolution of Cambrian trilobites. Biological Reviews, 61:121156.CrossRefGoogle Scholar
Mountjoy, E. W. 1962. Mount Robson (southeast) map-area, Rocky Mountains of Alberta and British Columbia (83E SE). Geological Survey of Canada, Paper 61-31.Google Scholar
Norford, B. S. 1962. Illustrations of Canadian fossils—Cambrian, Ordovician and Silurian of the western Cordillera. Geological Survey of Canada, Paper 62-14:125.CrossRefGoogle Scholar
Pack, P. D. and Gayle, H. B. 1971. A new olenellid trilobite, Biceratops nevadensis, from the Lower Cambrian near Las Vegas, Nevada. Journal of Paleontology, 45:893898.Google Scholar
Palmer, A. R. 1957. Ontogenetic development of two olenellid trilobites. Journal of Paleontology, 31:105128.Google Scholar
Palmer, A. R. 1998. Terminal Early Cambrian extinction of the Olenellina: Documentation from the Pioche Formation, Nevada. Journal of Paleontology, 72:650672.CrossRefGoogle Scholar
Palmer, A. R. 1999a. Ruin Wash, Chief Range, Nevada, p. 2425. In Palmer, A. R. (ed.), Laurentia 99. V Field Conference of the Cambrian Stage Subdivision Working Group, International Subcommision on Cambrian Stratigraphy, Utah, Nevada, California, U.S.A., September 12-22, 1999. Institute for Cambrian Studies, Boulder, Colorado.Google Scholar
Palmer, A. R. 1999b. Oak Springs Summit section, type locality for the base of the Delamaran Stage, p. 2628. In Palmer, A. R. (ed.), Laurentia 99. V Field Conference of the Cambrian Stage Subdivision Working Group, International Subcommision on Cambrian Stratigraphy, Utah, Nevada, California, U.S.A., September 12-22, 1999. Institute for Cambrian Studies, Boulder, Colorado.Google Scholar
Palmer, A. R. and Halley, R. B. 1979. Physical stratigraphy and trilobite biostratigraphy of the Carrara Formation (Lower and Middle Cambrian) in the southern Great Basin. U. S. Geological Survey Professional Paper 1047:1131.Google Scholar
Palmer, A. R. and Repina, L. N. 1993. Through a glass darkly: Taxonomy, phylogeny, and biostratigraphy of the Olenellina. University of Kansas Paleontological Contributions, New Series, 3:135.Google Scholar
Palmer, A. R. and Repina, L. N. 1997. Suborder Olenellina, p. 405429. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology, Pt. O, Arthropoda 1, Trilobita, Revised, Volume 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Paterson, J. R. and Edgecombe, G. D. 2006. The Early Cambrian trilobite family Emuellidae Pocock, 1970: systematic position and revision of Australian species. Journal of Paleontology, 80:496513.CrossRefGoogle Scholar
Poulsen, V. 1974. Olenellacean trilobites from eastern North Greenland. Bulletin of the Geological Society of Denmark, 23:79101.Google Scholar
Ramsköld, L. and Edgecombe, G. D. 1991. Trilobite monophyly revisited. Historical Biology, 4:267283.CrossRefGoogle Scholar
Raw, F. 1925. The development of Leptoplastus salteri (Callaway), and of other trilobites (Olenidae, Ptychoparidae, Conocoryphidae, Paradoxidae, Phacopidae, and Mesonacidae). Quarterly Journal of the Geological Society of London, 81:223324.CrossRefGoogle Scholar
Resser, C. E. 1928. Cambrian fossils from the Mohave Desert. Smithsonian Miscellaneous Collections, 81(2):114.Google Scholar
Richter, R. 1932. Crustacea (Paläontologie), p. 840846. In Dittler, R., Joos, G., Korschelt, E., Linek, G., Oltmanns, F., and Schaum, K. (eds.), Handwörterbuch der Naturwissenschaften, 2nd Ed.Gustav Fisher, Jena.Google Scholar
Smith, L. H. 1998a. Species level phenotypic variation in lower Paleozoic trilobites. Paleobiology, 24:1736.CrossRefGoogle Scholar
Smith, L. H. 1998b. Asymmetry of Early Paleozoic trilobites. Lethaia, 31:99112.CrossRefGoogle Scholar
Smith, L. H. and Lieberman, B. S. 1999. Disparity and constraint in olenelloid trilobites and the Cambrian Radiation. Paleobiology, 25:459470.CrossRefGoogle Scholar
Stitt, J. H. and Clark, R. L. 1984. A complete specimen of Peachella brevispina Palmer - an unusual olenellid trilobite (Arthropoda: Olenellida) from the lower Cambrian of California. Transactions of the San Diego Society of Natural History, 20:145150.CrossRefGoogle Scholar
Sundberg, F. A. 2000. Homeotic evolution in Cambrian trilobites. Paleobiology, 26:258270.2.0.CO;2>CrossRefGoogle Scholar
Sundberg, F. A. and Mccollum, L. B. 1997. Oryctocephalids (Corynexochida: Trilobita) of the Lower-Middle Cambrian boundary interval from California and Nevada. Journal of Paleontology, 71:10651090.CrossRefGoogle Scholar
Sundberg, F. A. and Mccollum, L. B. 2000. Ptychopariid trilobites of the Lower-Middle Cambrian boundary interval, Pioche Shale, southeastern Nevada. Journal of Paleontology, 74:604630.2.0.CO;2>CrossRefGoogle Scholar
Tasch, P. 1952. Adaptive trend in eyeline development in the Olenellidae. Journal of Paleontology, 26:484488.Google Scholar
Waggoner, B. M. and Collins, A. G. 1995. A new chondrophorine (Cnidaria, Hydrozoa) from the Cadiz Formation (Middle Cambrian) of California. Paläontologische Zeitschrift, 69:717.CrossRefGoogle Scholar
Walch, J. E. I. 1771. Die Naturgeschichte der Versteinerungen zur Erläuterung der Knorrischen Sammlung von Merkwürdigkeiten der Natur. Nürnberg.Google Scholar
Walcott, C. D. 1890. The fauna of the Lower Cambrian or Olenellus Zone, p. 509774. In Tenth Annual Report of the Director, 1888-1889, United States Geological Survey.Google Scholar
Webster, M. 2003. Olenelloid trilobites of the southern Great Basin, U.S.A., and a refinement of uppermost Dyeran biostratigraphy. Geological Society of America, Abstracts with Programs, 35(6):166.Google Scholar
Webster, M. 2005. Intraspecific variability in Early Cambrian olenelloid trilobites: implications for biostratigraphy, regional correlation, and phylogeny. Acta Micropalaeontologica Sinica, 22 (Supplement):196197.Google Scholar
Webster, M.In press. Paranephrolenellus, a new genus of Early Cambrian olenelloid trilobite. Memoirs of the Association of Australasian Palaeontologists.Google Scholar
Webster, M. and Hughes, N. C. 1999. Compaction-related deformation in Cambrian olenelloid trilobites and its implications for fossil morphometry. Journal of Paleontology, 73:355371.CrossRefGoogle Scholar
Webster, M. and Zelditch, M. L. 2005. Evolutionary modifications of ontogeny: heterochrony and beyond. Paleobiology, 31:354372.CrossRefGoogle Scholar
Webster, M., Sheets, H. D., and Hughes, N. C. 2001. Allometric patterning in trilobite ontogeny: testing for heterochrony in Nephrolenellus, p. 105144. In Zelditch, M. L. (ed.), Beyond Heterochrony: The Evolution of Development. Wiley and Sons, New York.Google Scholar
Webster, M., Sadler, P. M., Kooser, M. A., and Fowler, E. 2003. Combining stratigraphic sections and museum collections to increase biostratigraphic resolution, p. 95128. In Harries, P. J. (ed.), High-Resolution Approaches in Stratigraphic Paleontology. Topics In Geobiology, Volume 21. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
White, C. A. 1874. Preliminary report upon invertebrate fossils collected by the expeditions of 1871, 1872, and 1873, with descriptions of new species. U. S. Geographic and Geologic Surveys West of the 100th Meridian Report, p. 527.Google Scholar
Whittington, H. B. 1989. Olenelloid trilobites: Type species, functional morphology and higher classification. Philosophical Transactions of the Royal Society of London, Series B, 324:111147.Google Scholar
Whittington, H. B. and Kelly, S. R. A. 1997. Morphological terms applied to Trilobita. p. 313329. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology, Pt. O, Arthropoda 1, Trilobita, Revised, Volume 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Zelditch, M. L., Sheets, H. D., and Fink, W. L. 2003. The ontogenetic dynamics of shape disparity. Paleobiology, 29:139156.2.0.CO;2>CrossRefGoogle Scholar
Zelditch, M. L., Swiderski, D. L., Sheets, H. D., and Fink, W. L. 2004. Geometric Morphometries for Biologists: A Primer. Elsevier Academic Press, Amsterdam, 443 p.Google Scholar