Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-04T20:22:17.024Z Has data issue: false hasContentIssue false

New species of the rare early Eocene creodont Galecyon and the radiation of early Hyaenodontidae

Published online by Cambridge University Press:  14 July 2015

Shawn P. Zack*
Affiliation:
Department of Basic Medical Sciences, University of Arizona, College of Medicine-Phoenix, Phoenix, Arizona 85004, U.S.A.,

Abstract

Galecyon is one of the first appearing hyaenodontid creodonts, as well as one of the most poorly known. New specimens greatly improve our understanding of the morphology of this early Eocene genus, thereby enhance knowledge of the earliest radiation of Hyaenodontidae, and include the first associated upper dental remains, as well as fragmentary cranial remains. The new records substantially expand the stratigraphic range of the genus and allow recognition of two new species. The first, Galecyon peregrinus n. sp., is a small, early species that includes the first records of Galecyon from the earliest Eocene Wa-0 interval. The second, Galecyon chronius n. sp., is a large, terminal species, represented by numerous specimens that extend the range of the genus into the late Wasatchian. The type species, G. mordax, is restricted to specimens that are intermediate in size and stratigraphic position. Phylogenetic analysis of early hyaenodontids confirms the monophyly of Galecyon and places it basal to Prolimnocyon, Prototomus, and Pyrocyon. Arfia is identified as the earliest diverging hyaenodontid sampled, contrasting with prior support for a more crownward position. Prototomus martis is more closely allied to Pyrocyon than to other species of Prototomus. The three North American species of Galecyon form a probable anagenetic lineage.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bajpai, S., Kapur, V. V., and Thewissen, J. G. M.. 2009. Creodont and condylarth from the Cambay Shale (early Eocene, ~55-54 ma), Vastan Lignite Mine, Gujarat, western India. Journal of the Paleontological Society of India, 54:103109.Google Scholar
Barry, J. C. 1988. Dissopsalis, a middle and late Miocene proviverrine creodont (Mammalia) from Pakistan and Kenya. Journal of Vertebrate Paleontology, 8:2545.CrossRefGoogle Scholar
Bown, T. M. 1979. Geology and mammalian paleontology of the Sand Creek facies, lower Willwood Formation (lower Eocene), Washakie County, Wyoming. Memoirs of the Geological Survey of Wyoming, 2:1151.Google Scholar
Bown, T. M., Holroyd, P. A., and Rose, K. D.. 1994a. Mammal extinctions, body size, and paleotemperature. Proceedings of the National Academy of Sciences, U.S.A., 91:1040310406.CrossRefGoogle ScholarPubMed
Bown, T. M. and Rose, K. D.. 1987. Patterns of dental evolution in early Eocene anaptomorphine primates (Omomyidae) from the Bighorn Basin, Wyoming. The Paleontological Society Memoir, 23:1162.Google Scholar
Bown, T. M., Rose, K. D., Simons, E. L., and Wing, S. L.. 1994b. Distribution and stratigraphic correlation of upper Paleocene and lower Eocene fossil mammal and plant localities of the Fort Union, Willwood, and Tatman Formations, southern Bighorn Basin, Wyoming. U.S. Geological Survey Professional Paper, 1540:1103.Google Scholar
Chew, A. 2005. Biostratigraphy, paleoecology and synchronized evolution in the early Eocene mammalian fauna of the central Bighorn Basin, Wyoming. Ph.D., The Johns Hopkins University School of Medicine, Baltimore, 661 p.Google Scholar
Chew, A. 2009. Paleoecology of the early Eocene Willwood mammal fauna from the central Bighorn Basin, Wyoming. Paleobiology, 35:1331.CrossRefGoogle Scholar
Clemens, W. A. and Russell, L. S.. 1965. Mammalian fossils from the Upper Edmonton Formation, p. 3240. In Vertebrate Paleontology in Alberta. University of Alberta, Edmonton.Google Scholar
Clyde, W. C., Hamzi, W., Finarelli, J. A., Wing, S. L., Schankler, D. M., and Chew, A.. 2007. Basin-wide magnetostratigraphic framework for the Bighorn Basin, Wyoming. GSA Bulletin, 119:848859.CrossRefGoogle Scholar
Cope, E. D. 1874. Report upon vertebrate fossils discovered in New Mexico, with description of new species. Annual Report, Chief of Engineers, U.S. Army, Appendix, FF:589606(separatum p. 581-518).Google Scholar
Cope, E. D. 1875a. On the supposed Carnivora of the Eocene of Rocky Mountains. Proceedings of the Academy of Natural Sciences of Philadelphia, 27:444448.Google Scholar
Cope, E. D. 1875b. Systematic catalogue of Vertebrata of the Eocene of New Mexico, collected in 1874. Geographic Explorations and Surveys west of the 100th meridian, G. M. Wheeler, Corps of Engineers, U.S. Army, Washington, 4:37282.Google Scholar
Cope, E. D. 1880. The badlands of the Wind River and their fauna. American Naturalist, 14:745748.Google Scholar
Cope, E. D. 1882a. Notes on Eocene Mammalia. American Naturalist, 16:522.Google Scholar
Cope, E. D. 1882b. Two new genera of Mammalia from the Wasatch Eocene. American Naturalist, 16:1029.Google Scholar
Crochet, J.-Y. 1988. Le plus ancien Créodonte africain: Koholia atlasense nov. gen., nov. sp. (Eocène inférieur d'El Kohol, Atlas saharien, Algérie). Comptes Rendus de l'Académie des Sciences, Paris, Série II, 307:17951798.Google Scholar
Delson, E. 1971. Fossil mammals of the early Wasatchian Powder River Local Fauna, Eocene of northeast Wyoming. Bulletin of the American Museum of Natural History, 146:305364.Google Scholar
Denison, R. H. 1938. The broad-skulled Pseudocreodi. Annals of the New York Academy of Sciences, 37:163256.Google Scholar
Egi, N., Holroyd, P. A., Tsubamoto, T., Soe, A. N., Takai, M., and Ciochon, R. L.. 2005. Proviverrine hyaenodontids from the Eocene of Myanmar and a phylogenetic analysis of the proviverrines from the Para-Tethys area. Journal of Systematic Palaeontology, 3:337358.CrossRefGoogle Scholar
Emerson, S. B. and Radinsky, L. B.. 1980. Functional analysis of sabertooth cranial morphology. Paleobiology, 6:295312.CrossRefGoogle Scholar
Gebo, D. L. and Rose, K. D.. 1993. Skeletal morphology and locomotor adaptation in Prolimnocyon atavus, an early Eocene hyaenodontid creodont. Journal of Vertebrate Paleontology, 13:125144.CrossRefGoogle Scholar
Gheerbrant, E., Iarochène, M., Amaghzaz, M., and Bouya, B.. 2006. Early African hyaenodontid mammals and their bearing on the origin of the Creodonta. Geological Magazine, 143:475489.CrossRefGoogle Scholar
Gingerich, P. D. 1974. Stratigraphic record of early Eocene Hyopsodus and the geometry of mammalian phylogeny. Nature, 248:107109.CrossRefGoogle Scholar
Gingerich, P. D. 1976a. Paleontology and phylogeny: patterns of evolution at the species level in early Tertiary mammals. American Journal of Science, 276:128.CrossRefGoogle Scholar
Gingerich, P. D. 1976b. Cranial anatomy and evolution of Early Tertiary Plesiadapidae (Mammalia; Primates). University of Michigan Papers on Paleontology, 15:1141.Google Scholar
Gingerich, P. D. 1989. New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage. University of Michigan Papers on Paleontology, 28:197.Google Scholar
Gingerich, P. D. 1991. Systematics and evolution of early Eocene Perissodactyla (Mammalia) in the Clarks Fork Basin, Wyoming. Contributions from the Museum of Paleontology, The University of Michigan, 28:181213.Google Scholar
Gingerich, P. D. 1994. New species of Apheliscus, Haplomylus, and Hyopsodus (Mammalia, Condylarthra) from the late Paleocene of southern Montana and early Eocene of northwestern Wyoming. Contributions from the Museum of Paleontology, The University of Michigan, 29:119134.Google Scholar
Gingerich, P. D. 2001. Biostratigraphy of the continental Paleocene-Eocene boundary interval on Polecat Bench in the northern Bighorn Basin. Papers on Paleontology, University of Michigan, 33:3771.Google Scholar
Gingerich, P. D. 2003. Mammalian responses to climate change at the Paleocene-Eocene boundary: Polecat Bench record in the northern Bighorn Basin, Wyoming. Geological Society of America Special Paper, 369:463478.Google Scholar
Gingerich, P. D. 2006. Environment and evolution through the Paleocene-Eocene thermal maximum. Trends in Ecology and Evolution, 21:246253.CrossRefGoogle ScholarPubMed
Gingerich, P. D. and Clyde, W. C.. 2001. Overview of mammalian biostratigraphy in the Paleocene-Eocene Fort Union and Willwood Formations of the Bighorn and Clarks Fork Basins. Papers on Paleontology, University of Michigan, 33:114.Google Scholar
Gingerich, P. D. and Deutsch, H. A.. 1989. Systematics and evolution of early Eocene Hyaenodontidae (Mammalia, Creodonta) in the Clarks Fork Basin, Wyoming. Contributions from the Museum of Paleontology, The University of Michigan, 27:327391.Google Scholar
Gingerich, P. D. and Simons, E. L.. 1977. Systematic revision of the early Eocene Adapidae (Mammalia, Primates) in North America. Contributions from the Museum of Paleontology, The University of Michigan, 24:245279.Google Scholar
Gingerich, P. D. and Smith, T.. 2006. Paleocene-Eocene land mammals from three new latest Clarkforkian and earliest Wasatchian wash sites at Polecat Bench in the northern Bighorn Basin, Wyoming. Contributions from the Museum of Paleontology, The University of Michigan, 31:245303.Google Scholar
Godinot, M. 1981. Les Mammifères de Rains (Eocène inférieur, Provence). Palaeovertebrata, 10:43126.Google Scholar
Godinot, M., Crochet, J.-Y., Hartenberger, J.-L., Lange-Badré, B., Russell, D. E., and Sigé, B.. 1987. Nouvelles données sur les mammifères de Palette (Eocène inférieur, Provence). Münchner Geowissenschaftliche Abhandlungen A, 10:273288.Google Scholar
Gunnell, G. F. 1998. Creodonta, p. 91109. In Janis, C. M., Scott, K. M., and Jacobs, L. L. (eds.), Evolution of Tertiary Mammals of North America. Volume 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals. Cambridge University Press, Cambridge.Google Scholar
Hooker, J. J. and Dashzeveg, D.. 2003. Evidence for direct mammalian faunal interchange between Europe and Asia near the Paleocene-Eocene boundary. Geological Society of America Special Paper, 369:479500.Google Scholar
Krause, D. W. and Maas, M. C.. 1990. The biogeographic origins of late Paleocene-early Eocene mammalian immigrants to the Western Interior of North America, p. 71105. In Bown, T. M. and Rose, K. D. (eds.), Dawn of the Age of Mammals in the Northern Part of the Rocky Mountain Interior, North America. Vol. 243. Geological Society of America, Boulder.Google Scholar
Laizer, L. D. and Parieu, D.. 1838. Description et détermination d'une mâchoire fossile appartenant à un mammifère jusqu'à présent inconnu: Hyaenodon leptorhynchus. Comptes Rendus de l'Académie des Sciences, Paris, 7:442.Google Scholar
Lange-Badré, B. and Godinot, M.. 1982. Sur la présence du genre nord-américain Arfia Van Valen (Creodonta, Mammalia) dans la faune de Dormaal (Eocène inférieur de Belgique). Comptes Rendus de l'Académie des Sciences, Paris, Série II, 294:471476.Google Scholar
Lavrov, A. V. and Lopatin, A. V.. 2004. A new species of Arfia (Hyaenodontidae, Creodonta) from the basal Eocene of Mongolia. Paleontological Journal, 38:448457.Google Scholar
Leidy, J. 1869. The extinct mammalian fauna of Dakota and Nebraska. Journal of the Academy of Natural Sciences of Philadelphia, 7:1472.Google Scholar
Leidy, J. 1871. Remains of extinct mammals from Wyoming. Proceedings of the Academy of Natural Sciences of Philadelphia, 23:113116.Google Scholar
Lillegraven, J. A. 1969. Latest Cretaceous mammals of upper part of Edmonton Formation of Alberta, Canada, and review of marsupialplacental dichotomy in mammalian evolution. The University of Kansas Paleontological Contributions, 50:1122.Google Scholar
Matthew, W. D. 1901. Additional observations on the Creodonta. Bulletin of the American Museum of Natural History, 14:138.Google Scholar
Matthew, W. D. 1906. The osteology of Sinopa, a creodont mammal of the middle Eocene. Proceedings of the United States National Museum, 30:203233.CrossRefGoogle Scholar
Matthew, W. D. 1909. The Carnivora and Insectivora of the Bridger basin, Middle Eocene. Memoirs of the American Museum of Natural History, 9:291567.Google Scholar
Matthew, W. D. 1915. A revision of the lower Eocene Wasatch and Wind River faunas. Part I: Order Ferae (Carnivora). Suborder Creodonta. Bulletin of the American Museum of Natural History, 34:1103.Google Scholar
Matthew, W. D. 1918. A revision of the lower Eocene Wasatch and Wind River faunas: Insectivora (continued), Glires, Edentata. Bulletin of the American Museum of Natural History, 38:565657.Google Scholar
Matthew, W. D. 1929. Preoccupied names. Journal of Mammalogy, 10:171.CrossRefGoogle Scholar
McKenna, M. C. and Bell, S. K.. 1997. Classification of Mammals above the Species Level. Colombia University Press, New York, 631 p.Google Scholar
Mellett, J. S. 1977. Paleobiology of North American Hyaenodon (Mammalia, Creodonta). Contributions to Vertebrate Evolution, 1:1134.Google Scholar
Meng, J., Zhai, R., and Wyss, A. R.. 1998. The late Paleocene Bayan Ulan fauna of Inner Mongolia, China. Bulletin of Carnegie Museum of Natural History, 34:148185.Google Scholar
Morlo, M. 1999. Niche structure and evolution in creodont (Mammalia) faunas of the European and North American Eocene. Geobios, 32:297305.CrossRefGoogle Scholar
Morlo, M. and Gunnell, G. F.. 2003. Small limnocyonines (Hyaenodontidae, Mammalia) from the Bridgerian middle Eocene of Wyoming: Thinocyon, Prolimnocyon, and Iridodon, new genus. Contributions from the Museum of Paleontology, The University of Michigan, 31:4378.Google Scholar
Morlo, M., Gunnell, G. F., and Polly, P. D.. 2009. What, if not nothing, is a creodont? Phylogeny and classification of Hyaenodontida and other former creodonts. Journal of Vertebrate Paleontology, 29:152A.Google Scholar
Peigné, S., Morlo, M., Chaimanee, Y., Ducrocq, S., Tun, S. T., and Jaeger, J.-J.. 2007. New discoveries of hyaenodontids (Creodonta, Mammalia) from the Pondaung Formation, middle Eocene, Myanmarpaleobiogeographic implications. Geodiversitas, 29:441458.Google Scholar
Polly, P. D. 1993. Hyaenodontidae (Creodonta, Mammalia) and the position of systematics in evolutionary biology. Ph.D., University of California, Berkeley, Berkeley, 283 p.Google Scholar
Polly, P. D. 1996. The skeleton of Gazinocyon vulpeculus gen. et comb. nov. and the cladistic relationships of Hyaenodontidae (Eutheria, Mammalia). Journal of Vertebrate Paleontology, 16:303319.CrossRefGoogle Scholar
Rich, T. H. 1971. Deltetheridia, Carnivora, and Condylarthra (Mammalia) of the early Eocene, Paris Basin, France. University of California Publications in Geological Sciences, 88:172.Google Scholar
Rigby, J. K. Jr. 1980. Swain Quarry of the Fort Union Formation, middle Paleocene (Torrejonian), Carbon County, Wyoming: geologic setting and mammalian fauna. Evolutionary Monographs, 3:1179.Google Scholar
Rose, K. D. 2001. Compendium of Wasatchian mammal postcrania from the Willwood Formation of the Bighorn Basin. University of Michigan Papers on Paleontology, 33:157183.Google Scholar
Schankler, D. M. 1980. Faunal zonation of the Willwood Formation in the central Bighorn Basin, Wyoming. Papers on Paleontology, University of Michigan, 24:99114.Google Scholar
Secord, R. 2008. The Tiffanian Land-Mammal Age (middle and late Paleocene) in the Northern Bighorn Basin, Wyoming. University of Michigan Papers on Paleontology, 35:1192.Google Scholar
Simpson, G. G. 1940. Studies on the earliest primates. Bulletin of the American Museum of Natural History, 77:185212.Google Scholar
Simpson, G. G. 1941. Large Pleistocene felines of North America. American Museum Novitates, 1136:127.Google Scholar
Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85:1350.Google Scholar
Smith, T., Rose, K. D., and Gingerich, P. D.. 2006. Rapid Asia-Europe-North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene-Eocene Thermal Maximum. Proceedings of the National Academy of Sciences, 103:1122311227.CrossRefGoogle ScholarPubMed
Smith, T. and Smith, R.. 2001. The creodonts (Mammalia, Ferae) from the Paleocene-Eocene transition in Belgium (Tienen Formation, MP7). Belgian Journal of Zoology, 131:117135.Google Scholar
Solé, F., Gheerbrant, E., Amaghzaz, M., and Bouya, B.. 2009. Further evidence of the African antiquity of hyaenodontid (‘Creodonta’, Mammalia) evolution. Zoological Journal of the Linnean Society, 156:827846.CrossRefGoogle Scholar
Strait, S. G. 2001. New Wa-0 mammalian fauna from Castle Gardens in the southeastern Bighorn Basin, p. 127143. In Gingerich, P. D. (ed.), Paleocene-Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork Basins, Wyoming. Vol. 33.Google Scholar
Swofford, D. L. 1999. PAUP*4.0 β10. Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4 Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Thewissen, J. G. M. 1990. Evolution of Paleocene and Eocene Phenacodontidae. University of Michigan Papers on Paleontology, 29:1107.Google Scholar
van Valen, L. M. 1965. Some European Proviverrini (Mammalia, Deltatheridia). Palaeontology, 8:638665.Google Scholar
van Valen, L. M. 1966. Deltatheridia, a new order of mammals. Bulletin of the American Museum of Natural History, 132:1126.Google Scholar
van Valen, L. M. 1969. Evolution of dental growth and adaptation in mammalian carnivores. Evolution, 23:96117.CrossRefGoogle Scholar
Wesley-Hunt, G. D. 2005. The morphological diversification of carnivores in North America. Paleobiology, 31:3555.2.0.CO;2>CrossRefGoogle Scholar
Yans, J., Strait, S. G., Smith, T., Dupuis, C., Steurbaut, E., and Gingerich, P. D.. 2006. High-resolution carbon isotope stratigraphy and mammalian faunal change at the Paleocene-Eocene boundary in the Honeycombs area of the southern Bighorn Basin, Wyoming. American Journal of Science, 306:712735.CrossRefGoogle Scholar
Zack, S. P. 2009. The phylogeny of eutherian mammals: a new analysis emphasizing dental and postcranial morphology of Paleogene taxa. Ph.D., The Johns Hopkins University School of Medicine, Baltimore, 628 p.Google Scholar
Zack, S. P. and Rose, K. D.. 2007. New material of Galecyon, a rare early Eocene hyaenodontid (Mammalia: Creodonta). Journal of Vertebrate Paleontology, 27:170A.Google Scholar