Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T05:28:46.428Z Has data issue: false hasContentIssue false

A new Psilonichnus ichnospecies attributed to mud-shrimp Upogebia in estuarine settings

Published online by Cambridge University Press:  14 July 2015

Elizabeth A. Nesbitt
Affiliation:
Burke Museum of Natural History and Culture, Box 353010, University of Washington, Seattle, Washington 98195-3010,
Kathleen A. Campbell
Affiliation:
Department of Geology, University of Auckland, Private Bag 92019, Auckland, New Zealand,

Abstract

Psilonichnus lutimuratus n. ichnosp. is described from a Pliocene estuarine-mouth depositional environment (Skolithos ichnofacies) of the Olympic Peninsula, Washington, U.S.A. These simple Y-, I-, and J-shaped, mud-lined burrows occur in situ as dense patches within alternating, wavy-bedded sandstone and mudstone in a storm and flood influenced coastal sequence from an active tectonic margin. The I- and J-shaped traces represent erosional modification of burrow tops during storm-flood events. The new ichnospecies differs from the two other Psilonichnus ichnospecies by the distinct mud-lining of the burrow wall. Comparison with living thalassinoidean shrimp burrows and shrimp ecology allow this new ichnospecies to be attributed to the extant mud shrimp Upogebia. Biological and behavioral characteristics of this living shrimp restrict it to the mouth of the open estuary, and these parameters can be used to narrowly define a shoreline environment in the stratigraphic record.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allanson, B. R., Skinner, D., and Imberger, J. 1992. Flow patterns in prawn burrows. Estuarine, Coastal and Shelf Science, 35:253266.CrossRefGoogle Scholar
Astall, C. M., Taylor, A. C., and Atkinson, R. J. A. 1997. Behavioural and physiological implications of a burrow-dwelling lifestyle for two species of upogebiid mud-shrimp (Crustacea: Thalassinidae). Estuarine, Coastal and Shelf Science, 44:155168.CrossRefGoogle Scholar
Atkinson, R. J. A., and Nash, R. D. M. 1990. Some preliminary observations on the burrows of Callianassa subterranea (Montague) (Decapoda Thalassinidae) from the west coast of Scotland. Journal of Natural History, 24:403413.Google Scholar
Bromley, R. G. 1996. Trace Fossils: Biology, Taphonomy and Applications (second edition). Chapman Hall, London, 361 p.CrossRefGoogle Scholar
Bromley, R. G., and Frey, R. W. 1974. Redescription of the trace fossil Gyrolithes and taxonomic evaluation of Thalassinoides, Ophiomorpha and Spongeliomorpha . Geological Society of Denmark Bulletin, 23:311335.Google Scholar
Campbell, K. A., and Nesbitt, E. A. 2000. High resolution architecture and paleoecology of an active margin, storm-flood influenced estuary, Quinault Formation (Pliocene) Washington. Palaios, 15:553579.2.0.CO;2>CrossRefGoogle Scholar
Curran, H. A. 1984. Ichnology of Pleistocene carbonates in San Salvador, Bahamas. Journal of Paleontology, 58:312321.Google Scholar
Curran, H. A., and Frey, R. W. 1977. Pleistocene trace fossils from North Carolina (U.S.A.), and their Holocene analogues, p. 139162. In Crimes, T. P. and Harper, J. C. (eds.), The Study of Trace Fossils. Springer-Verlag, New York.Google Scholar
Curran, H. A., and White, B. 1991. Trace fossils of shallow subtidal to dunal ichnofacies in Bahamian Quaternary carbonates. Palaios, 6:498510.CrossRefGoogle Scholar
Dumbauld, B. R., Armstrong, D. A., and Feldman, K. L. 1996. Life history characteristics of two sympatric thalassinoidean shrimps, Neotrypaea californiensis and Upogebia pugettensis, with implications for oyster culture. Journal of Crustacean Biology, 16:689708.CrossRefGoogle Scholar
Dworschak, P. C. 1983. The biology of Upogebia pusilla (Petagna) (Decapoda, Thalassinoidae) 1. The burrows. Marine Ecology, 4:1943.CrossRefGoogle Scholar
Dworschak, P. C. 1987. Feeding behaviour of Upogebia pusilla and Callianassa tyrrhena (Crustacea, Decapoda, Thalassinoidae). Investigaçion Pesquera, 51, supplement 1:421429.Google Scholar
Feldman, K. L., Armstrong, D. A., Eggleston, D. B., and Dumbauld, B. R. 1997. Effects of substrate selection and post-settlement survival on recruitment success of the thalassinoidean shrimp Neotrypaea californiensis to intertidal shell and mud habitats. Marine Ecology Progress Series, 150:121136.CrossRefGoogle Scholar
Frey, R. W., and Howard, J. D. 1975. Endobenthic adaptation of juvenile thalassinoidean shrimp. Bulletin of the Geological Society of Denmark, 24:283297.Google Scholar
Frey, R. W., and Mayou, T. V. 1971. Decapod burrows in Holocene barrier island beaches and washover fans, Georgia. Senckenbergiana maritima, 3:5377.Google Scholar
Frey, R. W., and Pemberton, S. G. 1987. The Psilonichnus ichnocoenose and its relationship to adjacent marine and nonmarine ichnocoenoses along the Georgia coast. Bulletin of Canadian Petroleum Geology, 35:333357.Google Scholar
Frey, R. W., Curran, H. A., and Pemberton, S. G. 1984. Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus . Journal of Paleontology, 58:333350.Google Scholar
Frey, R. W., Howard, J. D., and Pryor, W. A. 1978. Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 23:199229.CrossRefGoogle Scholar
Frey, R. W., Pemberton, S. G., and Saunders, T. D. A. 1990. Ichnofacies and bathymetry: a passive relationship. Journal of Paleontology, 64:155158.CrossRefGoogle Scholar
Fürsich, F. T. 1981. Invertebrate trace fossils from the Upper Jurassic of Portugal. Communiçoes Serviços Geologicos de Portugal, 67:53168.Google Scholar
Gingras, M. K., Hubbard, S. M., Pemberton, S. G., and Saunders, T. 2000. The significance of Pleistocene Psilonichnus at Willapa Bay Washington. Palaios, 15:142151.2.0.CO;2>CrossRefGoogle Scholar
Gingras, M. K., Pemberton, S. G., Saunders, T., and Clifton, H. E. 1999. The ichnology of modern and Pleistocene brackish-water deposits at Willapa Bay, Washington: variability in estuarine settings. Palaios, 14:352374.CrossRefGoogle Scholar
Goldring, R. D., Bosence, W. J., and Blake, T. 1978. Estuarine sedimentation in the Eocene of southern England. Sedimentology, 25:861876.CrossRefGoogle Scholar
Griffis, R. B., and Chavez, F. L. 1988. Effects of sediment type on burrows of Callianassa californiensis Dana and C. gigas Dana. Journal of Experimental Marine Biology and Ecology, 117:239253.CrossRefGoogle Scholar
Griffis, R. B., and Suchanek, T. H. 1991. A model of burrow architecture and trophic modes in thalassinoidean shrimp (Decapoda: Thalassinoidae). Marine Ecology Progress Series, 79:171183.CrossRefGoogle Scholar
Hanekom, N., and Baird, D. 1987. Oxygen consumption of Callianassa kraussi Stebbing (Thalassinoidea, Decapoda, Crustacea) in relation to various environmental conditions. South African Journal of Zoology, 22:183189.CrossRefGoogle Scholar
Hanekom, N., and Erasmus, T. 1988. Variations in size compositions of populations of Upogebia africana (Ortman) (Decapoda, Crustacea) within the Swartkops estuary and possible influencing factors. South African Journal of Zoology, 23:259265.CrossRefGoogle Scholar
Hanekom, N., Baird, D., and Erasmus, T. 1988. A quantitative study to assess standing biomass of macrobenthos in soft substrata of the Swartkop estuary, South Africa. South African Journal of Marine Sciences, 6:163174.CrossRefGoogle Scholar
Howard, J. D., and Frey, R. W. 1984. Characteristic trace fossils in nearshore to offshore sequences, Upper Cretaceous of east-central Utah. Canadian Journal of Earth Sciences, 21:200219.CrossRefGoogle Scholar
Humphreys, B., and Balson, P. S. 1988. Psilonichnus (Fürsich) in late Pliocene subtidal marine sands of eastern England. Journal of Paleontology, 62:168172.CrossRefGoogle Scholar
Ichihara, T., Takatsuka, K., and Shimoyama, S. 1996. ‘Ichnostratigraphy’—the use of ichnofacies in stratigraphy. Journal of the Geological Society of Japan, 102:685699.CrossRefGoogle Scholar
International Commission of Zoological Nomenclature. 1999. International Code on Zoological Nomenclature, fourth edition, ICZN, London, 360 p.Google Scholar
Jensen, G. C. 1995. Pacific Coast Crabs and Shrimps. Sea Challengers, Monterey, 87 p.Google Scholar
Macginitie, G. E. 1930. The natural history of the mud-shrimp Upogebia pugettensis (Dana). The Annals and Magazine of Natural History, Series 10, 6:3644.CrossRefGoogle Scholar
MacGinitie, G. E. 1934. The natural history of Callianassa californiana Dana. American Midlands Naturalist, 15:166177.CrossRefGoogle Scholar
Manning, R. B., and Felder, D. L. 1991. Revision of the American Callianassidae (Crustacea: Decapoda: Thalassinoidae). Proceedings of the Biological Society of Washington, 104:764792.Google Scholar
Miller, M. F. 1982. Bioturbation of intertidal quartz-rich sands: a modern example and its sedimentologic and paleoecologic implication. Journal of Geology, 92:201216.CrossRefGoogle Scholar
Miller, M. F., and Johnson, K. G. 1981. Spirophyton in alluvial-tidal facies of the Catskill deltaic complex: possible biological control of ichnofossil distribution. Journal of Paleontology, 55:1061–1027.Google Scholar
Nara, M. 1995. Rosselia socialis: a dwelling structure of a probable terebellid polychaete. Lethaia, 28:171178.CrossRefGoogle Scholar
Nara, M. 1997. High-resolution analytical methods for event sedimentation using Rosselia socialis . Palaios, 12:489494.CrossRefGoogle Scholar
Nara, M., and Kotake, N. 1997. Trace fossil Psilonichnus in the middle to late Pleistocene Shimosa Group. Journal of the Geological Society of Japan, 103:971981.CrossRefGoogle Scholar
Nickell, L. A., and Atkinson, R. J. A. 1995. Functional morphology of burrows and trophic modes of three thalassinoidean shrimp species, and a new approach to the classification of thalassinoidean burrow morphology. Marine Ecology Progress Series, 128:181197.CrossRefGoogle Scholar
Okazaki, H. 1992. Sequence stratigraphy of the Shimosa Group, p. 5260. In Makino, Y., Masuda, F., Tokuhashi, S., Saito, Y., Ikehara, K., Katsura, Y., Ito, M., and Okazaki, H. (eds.), A Plio-Pleistocene Fore-arc Basin Fill in the Boso Peninsula, Central Japan. 29th International Geologic Congress Field Trip Guide A 10, Kyoto.Google Scholar
Ott, J. A., Fuchs, B., Fuchs, R., and Malasek, A. 1976. Observations on the biology of Callianassa stebbingi Borrowdale and Upogebia litoralis Risso, and their effects on the sediment. Senckenbergiana maritima, 8:6179.Google Scholar
Pemberton, S. G., and Frey, R. W. 1985. The Glossifungites ichnofacies: modern examples from the Georgia coast, U.S.A., p. 237259. In Curran, H. A. (ed.), Biogenic Studies: Their use in Interpreting Depositional Environments. SEPM Special Publication 35.CrossRefGoogle Scholar
Pemberton, S. G., and Wightman, D. M. 1992. Ichnological characteristics of brackish water deposits, p. 141167. In Pemberton, S. G. (ed.), Applications of Ichnology to Petroleum Exploration. SEPM Core Workshop No. 17, Tulsa, Oklahoma.CrossRefGoogle Scholar
Posey, M. H. 1986. Predation on burrowing shrimp: distribution and community consequences. Journal of Experimental Marine Biology and Ecology, 103:143161.CrossRefGoogle Scholar
Posey, M. H., Dumbauld, B. R., and Armstrong, D. A. 1991. Effects of a burrowing shrimp, Upogebia pugettensis (Dana), on the abundances of macro-infauna. Journal of Experimental Marine Biology and Ecology, 148:283294.CrossRefGoogle Scholar
Radwanski, A. 1970. Dependence of rock-borers and burrowers on the environmental conditions within the Tortonian littoral zone of southern Poland, p. 371390. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils, Geological Journal Special Issue 3.Google Scholar
Radwanski, A. 1977. Burrows attributed to the ghost crab Ocypode from the Korytnica basin (middle Miocene; Holy Cross Mountains, Poland). Acta Geologica Polonica, 27:217225.Google Scholar
Stephenson, D. G. 1965. Fossil burrows on the coast of Kenya. Nature, 207:850851.CrossRefGoogle Scholar
Suchanek, T. H. 1983. Control of seagrass communities and sediment distribution by Callianassa (Crustacea, Thalassinoidae) bioturbation. Journal of Marine Research, 41:281298.CrossRefGoogle Scholar
Suchanek, T. H. 1985. Thalassinoid shrimp burrows: ecological significance of species-specific architecture. Proceedings of the Fifth International Coral Reef Congress, Tahiti, 5:205210.Google Scholar
Swinbanks, D. D., and Luternauer, J. L. 1987. Burrow distribution of thalassinoidaean shrimps in Fraser Delta tidal flat, British Columbia. Journal of Paleontology, 61:315332.CrossRefGoogle Scholar
Swinbanks, D. D., and Murray, J. W. 1981. Biosedimentological zonation of Boundary Bay tidal flats, Fraser River Delta, British Columbia, Canada. Sedimentology, 28:201238.CrossRefGoogle Scholar
Thompson, R. K. 1972. Functional morphology of the hind-gut gland of Upogebia pugettensis (Crustacea, Thalassinoidea) and its role in burrow construction. Unpublished Ph.D. dissertation, University of California, Berkeley, 202 p.Google Scholar
Thompson, R. K., and Pritchard, A. W. 1969. Respiratory adaptations of two burrowing crustaceans, Callianassa californiensis and Upogebia pugettensis (Decapods, Thalassinoida). Biological Bulletin, 136:274287.CrossRefGoogle Scholar
Tunberg, B. 1986. Studies on the population ecology of Upogebia deltaura (Leach) (Crustacea, Thalassinoidae). Estuarine, Coastal and Shelf Science, 22:753765.CrossRefGoogle Scholar
Wooldridge, T. H., and Loubser, H. 1996. Larval release rhythms and tidal exchange in the estuarine mudprawn, Upogebia africana . Hydrobiologica, 337:113121.CrossRefGoogle Scholar