Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T18:21:21.891Z Has data issue: false hasContentIssue false

A new pleurocystitid rhombiferan echinoderm from the Middle Ordovician Galena Group of northern Iowa and southern Minnesota

Published online by Cambridge University Press:  20 May 2016

James C. Brower*
Affiliation:
Heroy Geology Laboratory, Syracuse University, Syracuse, New York, 13244-1070

Abstract

Pleurocystites strimplei new species, from the Galena Group of Iowa and Minnesota, is closely related to P. squamosus Billings from the Appalachians and Michigan. Numerous specimens provide information about growth, living habits, functional morphology, and respiration. The development of P. strimplei n. sp. is largely isometric with several exceptions. New dichopores form throughout ontogeny. Length of the dichopores and the area available for respiration are characterized by strong positive allometry relative to the volume of the animal. The length of the distal stem increases with respect to the size of the theca. During life the aboral side faced up. Some animals were largely covered by a thin layer of sediment whereas others lay directly on the seafloor. The orientation of the brachioles is most consistent with deposit feeding. Quantitative models of respiration suggest that the pectinirhombs accounted for over half of the needs of youngsters but this contribution falls to about 38 percent in adults. Respiration by the surface area of the theca and the water vascular system provide small amounts of oxygen, especially for animals living on the surface of the seafloor. Cloacal pumping or a similar type of respiratory device probably furnished the remainder of the oxygen required by P. strimplei n. sp. The morphometric data in conjunction with parameters taken from Recent oceans and echinoderms produce a plausible respiration budget, which is affected by size, age, allometry, and living orientation.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausich, W. I., and Baumiller, T. K. 1993. Taphonomic method for determining muscular articulations in fossil crinoids. Palaios, 8:477484.CrossRefGoogle Scholar
Bather, F. A. 1899. A phylogenetic classification of the Pelmatozoa. British Association for the Advancement of Science, Report for 1898, p. 916922.Google Scholar
Baumiller, T. K. 1992. Importance of hydrodynamic lift to crinoid autecology, or could crinoids function as kites? Journal of Paleontology, 66:658665.Google Scholar
Baumiller, T. K. 1993. Crinoid stalks as cantilever beams and the nature of stalk ligament. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 190:279297.Google Scholar
Baumiller, T. K., and Labarbera, M. 1989. Metabolic rates of Caribbean crinoids (Echinodermata), with special reference to deep-water stalked and stalkless taxa. Comparative Biochemistry and Physiology, 93A:391394.Google Scholar
Beaver, H. H. 1996. Hydrospire meshwork of the Carboniferous blastoid Pentremites Say. Journal of Paleontology, 70:333335.Google Scholar
Berner, R. A. 1987. Models for carbon and sulfur cycles and atmospheric oxygen: application to Paleozoic geologic history. American Journal of Science, 287:177196.CrossRefGoogle Scholar
Berner, R. A. 1989. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Palaeogeography, Palaeoclimatology, Palaeoecology, 75:97122.CrossRefGoogle Scholar
Billings, E. 1854. On some new genera and species of Cystidea from the Trenton Limestone. Canadian Journal, Series 1, 2:215218, 250-253, 268-274.Google Scholar
Billings, E. 1858. On the Cystideae of the Lower Silurian Rocks of Canada. Figures and Descriptions of Canadian Organic Remains, Canadian Geological Survey, Decade III, p. 974.Google Scholar
Bolton, T. E. 1970. Echinodermata from the Ordovician (Pleurocystites, Cremacrinus) and Silurian (Hemicystites, Protaxocrinus, Macnamaratylus) of Lake Timiskaming region, Ontario and Quebec. Geological Survey of Canada Bulletin, 187:5966.Google Scholar
Bolton, T. E. 1972. Geological map and notes on the Ordovician and Silurian litho- and biostratigraphy, Anticosti Island, Quebec. Geological Survey of Canada Paper, 71-19, 44 p.Google Scholar
Broadhead, T. W., and Strimple, H. L. 1975. Respiration in a vagrant Ordovician cystoid, Amecystis. Paleobiology, 1:312319.Google Scholar
Brower, J. C. 1973. Crinoids from the Girardeau Limestone (Ordovician). Palaeontographica Americana, 7:261499.Google Scholar
Brower, J. C. 1974. Ontogeny of camerate crinoids. University of Kansas Paleontological Contributions Paper 72, 53 p.Google Scholar
Brower, J. C. 1987. The relations between allometry, phylogeny and functional morphology in some calceocrinid crinoids. Journal of Paleontology, 61:9991032.Google Scholar
Brower, J. C. 1992a. Cupulocrinid crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 66:99128.CrossRefGoogle Scholar
Brower, J. C. 1992b. Hybocrinid and disparid crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 66:973993.CrossRefGoogle Scholar
Brower, J. C. 1994. Camerate crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 68:570599.Google Scholar
Brower, J. C. 1995a. Eoparisocrinid crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 69:351366.CrossRefGoogle Scholar
Brower, J. C. 1995b. Dendrocrinid crinoids from the Ordovician of northern Iowa and southern Minnesota. Journal of Paleontology, 69:939960.Google Scholar
Brower, J. C. 1996. Carabocrinid crinoids from the Ordovician of northern Iowa and southern Minnesota. Journal of Paleontology, 70:614631.CrossRefGoogle Scholar
Brower, J. C. 1997. Homocrinid crinoids from the Upper Ordovician of northern Iowa and southern Minnesota. Journal of Paleontology, 71:442458.Google Scholar
Brower, J. C., and Strimple, H. L. 1983. Ordovician calceocrinids from northern Iowa and southern Minnesota. Journal of Paleontology, 57:12611281.Google Scholar
Cain, J. D. Blyth. 1968. Aspects of the depositional environment and palaeoecology of crinoidal limestones. Scottish Journal of Geology, 4:191208.Google Scholar
Donovan, S. K. 1989. The improbability of a muscular crinoid column. Lethaia, 22:307315.CrossRefGoogle Scholar
Farmanfarmaian, A. 1966. The respiratory physiology of echinoderms, p. 245265. In Boolootian, R. A. (ed.), Physiology of Echinodermata. John Wiley and Sons, New York.Google Scholar
Gislén, T. 1924. Echinoderm studies. Zoologiska Bidrag från Uppsala, Band 9, Zoologische Beiträge aus Uppsala, 316 p.Google Scholar
Grimmer, J. C., Holland, N. D., and Hayami, I. 1985. Fine structure of the stalk of an isocrinid sea lily (Metacrinus rotundus) (Echinodermata, Crinoidea). Zoomorphology, 105:3950.Google Scholar
Grimmer, J. C., Holland, N. D., and Messing, C. G. 1984. Fine structure of the stalk of the bourgueticrinid sea lily Democrinus conifer (Echinodermata: Crinoidea). Marine Biology, 81:163176.Google Scholar
Holland, N. D., Grimmer, J. C., and Wiegmann, K. 1991. The structure of the sea lily Calamocrinus diomedae, with special reference to the articulations, skeletal microstructure, symbiotic bacteria, axial organs, and stalk tissues (Crinoidea, Millericrinida). Zoomorphology, 110:115132.Google Scholar
Hussey, R. C. 1928. Cystoids from the Trenton rocks of Michigan. University of Michigan; Contributions from the Museum of Paleontology, 3:7779.Google Scholar
Hyman, L. H. 1955. The Invertebrates: Echinodermata. McGraw-Hill Book Company, Incorporated, New York, 763 p.Google Scholar
Jaekel, O. 1899. Stammesgeschichte der Pelmatozoen, Band 1, Thecoidea und Cystoidea. Julius Springer, Berlin, 442 p.Google Scholar
Jefferies, R. P. S. 1973. The Ordovician fossil Lagynocystis pyramidalis (Barrande) and the ancestry of amphioxus. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 265:409469.Google Scholar
Jefferies, R. P. S. 1990. The solute Dendrocystites scoticus from the Upper Ordovician of Scotland and the ancestry of chordates and echinoderms. Palaeontology, 33:631679.Google Scholar
Jell, P. A. 1983. Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea). Association of Australasian Palaeontologists Memoir, 1:209235.Google Scholar
Kolata, D. R. 1975. Middle Ordovician echinoderms from northern Illinois and southern Wisconsin. Paleontological Society Memoir 7 (Journal of Paleontology, 49[3]Supplement, 74 p.Google Scholar
Kolata, D. R., Brower, J. C., and Frest, T. J. 1987. Upper Mississippi Valley Champlainian and Cincinnatian echinoderms. Minnesota Geological Survey Report of Investigations, 35:179181.Google Scholar
Kolata, D. R., Strimple, H. L., and Levorson, C. O. 1977. Revision of the Ordovician carpoid family Iowacystidae. Palaeontology, 20:529557.Google Scholar
Lawrence, J. M. 1987. A functional biology of echinoderms. The Johns Hopkins University Press, Baltimore, 340 p.Google Scholar
Lawrence, J. M., and Lane, J. M. 1982. The utilization of nutrients by postmetamorphic echinoderms, p. 331371. In Jangoux, M. and Lawrence, J. M. (eds.), Echinoderm Nutrition. A. A. Balkema, Rotterdam.Google Scholar
Levorson, C. O., Gerk, A. J., Sloan, R. E., and Bisagno, L. A. 1987. General section of the Middle and Late Ordovician strata of northeastern Iowa. Minnesota Geological Survey Report of Investigations, 35:2539.Google Scholar
Motokawa, T. 1984. Catch connective tissue: the connective tissue with adjustable mechanical properties, p. 6973. In Keegan, B. F. and O'Connor, B. D. (eds.), Proceedings of the Fifth International Echinoderm Conference, Galway. A. A. Balkema, Rotterdam.Google Scholar
Neumayr, M. 1889. Die Stämme des Thierreiches. Wirbellose Thiere, Volume 1. Verlag von F. Tempsky und Tempsky, Vienna and Prague, 603 p.Google Scholar
Nichols, D. 1962. Echinoderms. Hutchinson University Library. Hutchinson & Company, London, 200 p.Google Scholar
Parsley, R. L. 1970. Revision of the North American Pleurocystitidae (Rhombifera-Cystoidea). Bulletins of American Paleontology, 58 (260): 135-213.Google Scholar
Parsley, R. L. 1982. Pleurocystitids, p. 274279. In Sprinkle, J. (ed.), Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions, Monograph 1.Google Scholar
Parsley, R. L. 1988. Feeding and respiratory strategies in Stylophora, p. 347361. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Paul, C. R. C. 1967. The functional morphology and mode of life of the cystoid Pleurocystites, E. Billings, 1854. Symposia of the Zoological Society of London, 20:105123.Google Scholar
Paul, C. R. C. 1968. Morphology and function of dichoporate pore-structures in cystoids. Palaeontology, 11:697730.Google Scholar
Paul, C. R. C. 1976a. Respiration rates in primitive (fossil) echinoderms. Thalassia Jugoslavia, 12:277286.Google Scholar
Paul, C. R. C. 1976b. Palaeogeography of primitive echinoderms in the Ordovician, p. 553574. In Bassett, M. G. (ed.), The Ordovician System, Proceedings of a Palaeontological Association Symposium, Birmingham, September, 1974. University of Wales Press and National Museum of Wales, Cardiff.Google Scholar
Paul, C. R. C. 1984. British Ordovician cystoids, part 2. Palaeontographical Society Monographs, 136:65152.Google Scholar
Paul, C. R. C. and Smith, A. B. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews, 59:443481.Google Scholar
Schmidt-Nielsen, K. 1983. Animal Physiology (third edition). Cambridge University Press. Cambridge, 619 p.Google Scholar
Schmidt-Nielsen, K. 1984. Scaling: Why is Animal Size So Important? Cambridge University Press. Cambridge, 241 p.CrossRefGoogle Scholar
Shick, J. M. 1983. Respiratory gas exchange in echinoderms, p. 67110. In Jangoux, M. and Lawrence, J. M. (eds.), Echinoderm Studies, Volume I. A. A. Balkema, Rotterdam.Google Scholar
Sinclair, G. W., 1948. Three notes on Ordovician cystids. Journal of Paleontology, 22:301314.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1969. Biometry. W. H. Freeman and Company, San Francisco, 776 p.Google Scholar
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Harvard University Museum of Comparative Zoology Special Publication, 283 p.Google Scholar
Sprinkle, J. 1974. New rhombiferan cystoids from the Middle Ordovician of Nevada. Journal of Paleontology, 48:11741201.Google Scholar
Sprinkle, J. 1983. Patterns and problems in echinoderm evolution, p. 118. In Jangoux, M. and Lawrence, J. M. (eds.), Echinoderm Studies, Volume I. A. A. Balkema, Rotterdam.Google Scholar
Sprinkle, J., Henry, L., Zimmer, F. S., Kelley, L. S., and Whiteley, J., 1985. New Pleurocystites from the Bromide Formation of Oklahoma. Journal of Paleontology, 59:14761480.Google Scholar
Sumrall, C. D., and Sprinkle, J. 1995. Plating and pectinirhombs of the Ordovician rhombiferan Plethoschisma. Journal of Paleontology, 69:772778.Google Scholar
Ubaghs, G. 1968. Eocrinoidea, p. S455S495. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part S, Echinodermata 1. Geological Society of America and University of Kansas Press.Google Scholar
Wilkie, I. C., Emson, R. H., and Young, C. M. 1993. Smart collagen in sea lilies. Nature, 366:519520.Google Scholar
Woods, I. S., and Jefferies, R. P. S. 1992. A new stem-group chordate from the Lower Ordovician of South Wales, and the problem of locomotion in boot-shaped cornutes. Palaeontology, 35:125.Google Scholar
Zittel, K. A. 1879. Protozoa, Coelenterata, Echinodermata, and Molluscoidea. Handbuch der Palaontologie, Band 1, Paläozoologie. Munich and Leipzig, 765 p.Google Scholar