Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T14:59:10.410Z Has data issue: false hasContentIssue false

A new Ordovician asteroid (Echinodermata) with somasteroid-like skeletal elements

Published online by Cambridge University Press:  14 July 2015

Daniel B. Blake*
Affiliation:
Department of Geology, University of Illinois, Urbana 61801,

Abstract

A new genus and species of Asteroidea (Echinodermata), Embolaster graffhami, Embolasteridae, n. fam., is described from the Upper Ordovician Bromide Formation of Oklahoma. Embolaster is important in part because of the presence of two similar ossicles on each interbrachial plane in the axillary position; only a single axillary is recognized in most Paleozoic asteroids. the axillary traditionally has been considered to be a part of the marginal series, although marginals are almost always paired. the two ossicles are interpreted as axillaries and the homologues of an ancestral proximal marginal pair. the odontophore, which lies distal to the mouth angle pair of most asteroids, tentatively is the homologue of the proximal axillary.

Embolaster also is important because of the presence of an ossicular series between the ambulacrals and the putative adambulacrals. An extra ossicular series in this position is known from taxa traditionally assigned to the ophiuroids; however, other characters of Embolaster indicate asteroid affinities for this genus. the two ossicles lateral to and aligned with the ambulacrals in Embolaster are interpreted as homologous with the similarly arranged radial virgal series of somasteroids, although specific ossicular homologies are problematic.

A part of the mouth frame structure of Embolaster is exposed, although it is tiny and therefore difficult to interpret. the mouth frame arrangement is reminiscent of those of somasteroids, with small, narrow circumorals and apparent buccal podial basins directed toward the mouth opening. Many of the striking characters of Embolaster probably are plesiomorphic; apomorphies are difficult to ascertain.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blainville, H. M. de. 1830. Zoophytes. Dictionnaire des Sciences Naturelles. F. G. Levrault, Strasbourg, 60 p.Google Scholar
Blake, D. B. 1994. Re-evaluation of the Palasteriscidae Gregory, 1900, and the early phylogeny of the Asteroidea (Echinodermata). Journal of Paleontology, 68:123134.CrossRefGoogle Scholar
Blake, D. B. 1998. Morphological characters of early asteroids and ophiuroids, p. 57. In Mooi, R. J. and Telford, M. L. (eds.), Echinoderms, San Francisco. A. A. Balkema, Rotterdam.Google Scholar
Blake, D. B. 2000. The class Asteroidea (Echinodermata): Fossils and the base of the crown group. American Zoologist, 40:316325.Google Scholar
Blake, D. B. 2007. Two Late Ordovician asteroids (Echinodermata) with characters suggestive of early ophiuroids. Journal of Paleontology, 81:14761485.CrossRefGoogle Scholar
Blake, D. B. and Elliott, D. R. 2003. Ossicular homologies, systematics, and phylogenetic implications of certain North American Carboniferous asteroids. Journal of Paleontology, 77:476489.2.0.CO;2>CrossRefGoogle Scholar
Blake, D. B. and Guensburg, T. E. 1993. New Lower and Middle Ordovician stelleroids (Echinodermata) and their bearing on the origins and early history of the stelleroid echinoderms. Journal of Paleontology, 67:103113.CrossRefGoogle Scholar
Blake, D. B. and Guensburg, T. E. 2005. Implications of a new Early Ordovician asteroid (Echinodermata) for the phylogeny of Asterozoans. Journal of Paleontology, 79:395399.2.0.CO;2>CrossRefGoogle Scholar
Blake, D. B. and Hagdorn, H. 2003. The Asteroidea (Echinodermata) of the Muschelkalk (Triassic of Germany). Palaeontologische Zeitschrift, 77:2358.CrossRefGoogle Scholar
Blake, D. B. and Hotchkiss, F. H. C. 2004. Recognition of the asteroid (Echinodermata) crown group: Implications of the ventral skeleton. Journal of Paleontology, 78:359370.2.0.CO;2>CrossRefGoogle Scholar
Blake, D. B. and Rozhnov, S. 2007. Aspects of life mode among Ordovician asteroids: Implications of new specimens from Baltica. Acta Paleontologica Polonica, 52:519533.Google Scholar
Blake, D. B., Bielert, F., and Bielert, U. 2006. New early crown-group asteroids (Echinodermata; Triassic of Germany). Palaeontologische Zeitschrift, 80:284295.CrossRefGoogle Scholar
Blake, D. B., Guensburg, T. E., Sprinkle, J., and Sumrall, C. 2007. A new, phylogenetically significant Lower Ordovician asteroid (Echinodermata). Journal of Paleontology, 81:12571265.CrossRefGoogle Scholar
Branstrator, J. W. 1975. Paleobiology and revision of the Ordovician Asteriadina (Echinodermata: Asteroidea) of the Cincinnati Area. Unpublished Ph.D. dissertation, University of Cincinnati, 270 p.Google Scholar
David, B. and Mooi, R. 1998. Major events in the evolution of echinoderms viewed by the light of embryology, p. 2128. In Mooi, R. and Telford, M. (eds.), Echinoderms: San Francisco. Balkema, Rotterdam.Google Scholar
Eck, H. 1879. Bemerkungen zu den Mittheilungen des Herrn H. Pohlig über “Aspidura, ein mesozoisches Ophiuridengenus” und über die Lagerstätte der Ophiuren im Muschelkalk. Zeitschrift der Deutschen Geologischen Gesellschaft, 31:3553.Google Scholar
Etheridge, R. 1899. On the occurrence of a starfish in the Upper Silurian series of Bowning, New South Wales. Records of the Australian Museum, 3:128129.CrossRefGoogle Scholar
Fell, H. B. 1963. The phylogeny of sea-stars. Philosophical Transactions of the Royal Society, London, B, 246:381435.Google Scholar
Gale, A. S. 1987. Phylogeny and classification of the Asteroidea. Zoological Journal of the Linnean Society, 89:107132.CrossRefGoogle Scholar
Gordon, I. 1929. Skeletal development in Arbacia, Echinarachnius and Leptasterias. Philosophical Transactions of the Royal Society, London, B, 217:289334.Google Scholar
Gray, J. E. 1840. A synopsis of the genera and species of the class Hypostoma (Asterias Linnaeus). The Annals and Magazine of Natural History, 6:175184,275-290.CrossRefGoogle Scholar
Hotchkiss, F. H. C. 1976. Devonian ophiuroids from New York State: Reclassification of Klasmura, Antiquaster, and Stenaster into the suborder Scalarina nov., order Stenurida. New York State Museum Bulletin, 425, 39 p.Google Scholar
Hotchkiss, F. H. C. 1993. A new Devonian ophiuroid (Echinodermata: Ophiurida) from New York State and its bearing on the origin of ophiuroid arm plates. Proceedings of the Biological Society of Washington, 106:6384.Google Scholar
Hudson, G. H. 1912. A fossil starfish with ambulacral covering plates. Ottawa Naturalist, 26:2126,45-52.Google Scholar
Hyman, L. H. 1955. The Invertebrates, 4. Echinodermata. McGraw-Hill, New York, 763 p.Google Scholar
Jaekel, O. 1923. Zur Morphogenie der Asterozoa. Palaeontologischen Zeitschrift, 5:344350.CrossRefGoogle Scholar
Kesling, R. V. 1971. Antiquaster magrumi, a new unusual brittle-star from the Middle Devonian Silica Formation of northwestern Ohio. Contributions from The Museum of Paleontology, The University of Michigan, 23:181191.Google Scholar
McCoy, F. 1854. Systematic Description of the British Palaeozoic Fossils in the Geological Museum of the University of Cambridge. In Sedgwick, A. (ed.), A Synopsis of the Classification of the British Palaeozoic Rocks. The University Press, Cambridge, 661 p.Google Scholar
Miller, S. A. and Dyer, C. B. 1878. Contributions to Palaeontology. Journal of the Cincinnati Society of Natural History, 1:2439.Google Scholar
Mooi, R. and David, B. 2000. What a new model of skeletal homologies tells us about asteroid evolution. American Zoologist, 40:326339.Google Scholar
Mooi, R., David, B., and Marchand, D. 1994. Echinoderm skeletal homologies: Classical morphology meets modern phylogenetics, p. 8795. In David, B., Guille, A., Féral, J.-P., and Roux, M. (eds.), Echinoderms through Time. A. A. Balkema, Rotterdam.Google Scholar
Paul, C. R. C. and Smith, A. B. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews, 59:443481.CrossRefGoogle Scholar
Roemer, F. 1863. Neue Asteriden und Crinoiden aus devonischem Dachschiefer von Bundenbach bei Birkenfeld. Palaeontographica, 9:143152.Google Scholar
Salter, J. W. 1857. On some new Palaeozoic star-fishes. Annals and Magazine of Natural History, Series 2, 20:321334.CrossRefGoogle Scholar
Schuchert, C. 1915. Revision of Paleozoic Stelleroidea with special reference to North American Asteroidea. U.S. National Museum Bulletin 88, 311 p.CrossRefGoogle Scholar
Shackleton, J. D. 2005. Skeletal homologies, phylogeny and classification of the earliest asterozoan echinoderms. Journal of Systematic Palaeontology, 3:29114.CrossRefGoogle Scholar
Simonowitsch, S. 1871. Über einige Asterioiden der rheinischen Grauwacke. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften, Wien, 64:77122.Google Scholar
Smith, A. B. and Jell, P. A. 1990. Cambrian edrioasteroids from Australia and the origin of starfishes. Memoirs of the Queensland Museum, 28:715778.Google Scholar
Spencer, W. K. 1914-1940. British Palaeozoic Asterozoa, Pt. 1-10, Palaeontographical Society of London Monograph, 540 p.Google Scholar
Spencer, W. K. 1916. British Palaeozoic Asterozoa. Pt. 2, Palaeontographical Society of London Monograph, 57108.Google Scholar
Spencer, W. K. 1919. British Palaeozoic Asterozoa. Pt. 4, Palaeontographical Society of London Monograph, 169196.Google Scholar
Spencer, W. K. 1940. British Palaeozoic Asterozoa. Pt. 10, Palaeontographical Society of London Monograph, 495540.Google Scholar
Spencer, W. K. 1951. Early Palaeozoic starfishes. Philosophical Transactions of the Royal Society, London, B, 235:87129.Google Scholar
Spencer, W. K. and Wright, C. W. 1966. Asterozoans, p. U4U107. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. U, Echinodermata 3(1). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Sprinkle, J. (ed.). 1982. Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. The University of Kansas Paleontological Contributions, Monograph 1, 369 p.Google Scholar
Stuertz, B. 1900. Ein weiter Beitrag zur Kenntnis palaeozoischer Asteroiden. Verhandlungen des Naturhistorischen Vereins der Preussischen Rheinlande und Westfalens, 56:176240.Google Scholar
Sutton, M. D., Briggs, D. E. G., Siveter, David J., Siveter, Derek J., and Gladwell, D. J. 2005. A starfish with three-dimensionally preserved soft parts from the Silurian of England. Proceedings of the Royal Society, B, 272:10011006.CrossRefGoogle ScholarPubMed
Ulrich, E. O. 1879. Descriptions of new genera and species of fossils. Journal of the Cincinnati Society of Natural History, 2:1920.Google Scholar
Webby, B. D., Cooper, R. A., Bergstrom, S. M., and Paris, F. 2004. Stratigraphic framework and time slices, p. 4147. In Webby, B. D., Droser, M. L., Paris, F., and Percival, I. (eds.), The Great Ordovician Biodiversification Event. Columbia University Press, New York.CrossRefGoogle Scholar