Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T22:47:46.817Z Has data issue: false hasContentIssue false

A new noncalcified dasycladalean alga from the Silurian of Wisconsin

Published online by Cambridge University Press:  20 May 2016

STEVEN T. LoDuca
Affiliation:
1Department of Geography and Geology, Eastern Michigan University, Ypsilanti 48197,
Joanne Kluessendorf
Affiliation:
2Weis Earth Science Museum, University of Wisconsin-Fox Valley, Menasha 54952
Donald G. Mikulic
Affiliation:
3Illinois State Geological Survey, Champaign 61820

Abstract

Noncalcified thalli, consisting of a narrow main axis with numerous branched hairlike laterals in whorls and a subapical array of undivided clavate laterals, from the Silurian (Llandovery) Brandon Bridge Formation of southeastern Wisconsin, constitute the basis for a new genus and species of dasycladalean alga, Heterocladus waukeshaensis. A relationship within the family Triploporellaceae is indicated by the whorled arrangement of the laterals and the absence of gametophores on mature specimens. A compilation of occurrence data suggests that noncalcified dasyclads, as a whole, were more abundant and diverse during the Ordovician and Silurian than at any other time in their history. The heterocladous thallus architecture of this alga adds to a wide range of morphological variation documented among Ordovician and Silurian dasyclads, the sum of which indicates that Dasycladales underwent a significant evolutionary radiation during the early Paleozoic.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barattolo, F. 1981. Osservazioni su Triploporella fraasi Steinmann 1880 (alghe verdi, Dasicladali). Atti della Academia Potaniana, 30:141.Google Scholar
Barattolo, F. 1990. Mesozoic and Cenozoic marine benthic calcareous algae with particular regard to Mesozoic dasycladaleans, p. 504540. In Riding, R. (ed.), Calcareous Algae and Stromatolites. Springer-Verlag, Berlin.Google Scholar
Berger, S., and Kaever, M. J. 1992. Dasycladales: An Illustrated Monograph of a Fascinating Algal Order. Georg Thieme, Stuttgart, 247 p.Google Scholar
Boucek, B. 1957. The dendroid graptolites of the Silurian of Bohemia. Ústredního Ústavu Geologického Rozpravy, 23:1294.Google Scholar
Deloffre, R. 1988. Nouvelle taxonomie des algues Dasycladales. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 12:165217.Google Scholar
Deloffre, R., and Génot, P. 1982. Les algues Dasycladales du Cénozoique. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 4:1247.Google Scholar
Dumais, J., and Harrison, L. G. 2000. Whorl formation in the dasycladalean algae: the pattern formation viewpoint. Philosophical Transactions of the Royal Society of London B, 161:281305.Google Scholar
Ehlers, G. M., and Kesling, R. V. 1957. Silurian Rocks of the Northern Peninsula of Michigan. Guidebook for the Michigan Geological Society Annual Geological Excursion, Michigan Geological Society, Ann Arbor, 63 p.Google Scholar
Elliott, G. 1971. A new fossil alga from the English Silurian. Palaeontology, 14:637641.Google Scholar
Elliott, G. 1989. The evidence of reproductive mechanisms in fossil dasyclads (algae: Chlorophyta). Palaeontology, 64:269275.Google Scholar
Graham, L. E., and Wilcox, L. W. 2000. Algae. Prentice Hall, Upper Saddle River, New Jersey, 710 p.Google Scholar
Granier, B., Masse, J.-P., and Berthou, P.-Y. 1994. Heteroporella lepina Praturlon, 1967, revisited (followed by taxonomic notes on the so-called “Heteroporella” species). Proceedings of the International Symposium and Field-Meeting “Alpine Algae '93”. Beiträge zur Paläontologie, Vienna, 19:129141.Google Scholar
H⊘eg, O. A. 1926. Description of the fossil plants, p. 611. In H⊘eg, O. and Kiær, J. (eds.), A New Plant Bearing Horizon in the Marine Ludlow of Ringerike. Avhandlinger utgitt av det Norske Videnskaps-Akademi, Oslo, I. Matematisk-Naturvidenskapelig Klasse.Google Scholar
H⊘eg, O. A. 1937. Callisphenus gracilis, n. gen. n. sp., a fossil alga from the Wenlock of the Oslo region. Norsk Geologisk Tidsskrift, 17:4346.Google Scholar
Ishchenko, A. A. 1985. Siluriiskie vodorosli Podolii. Naukova Dumka, Kyiv, 114 p.Google Scholar
Kenrick, P., and Li, C.-S. 1998. An early, non-calcified dasycladalean alga from the Lower Devonian of Yunan Province, China. Review of Palaeobotany and Palynology, 100:7388.Google Scholar
Korde, K. B. 1993. Noncalcified Paleozoic algae from the Eastern Sayan Mountains. Paleontological Journal, 27:141155.Google Scholar
Kräusel, R., and Weyland, H. 1962. Algen und Psilophyten aus dem Unterdevon von Alken an der Mosel. Senckenbergiana Lethaea, 43:249282.Google Scholar
Lin, Y.-K. 1984. Some new material of Ordovician medusaegraptids. Acta Palaeontologica Sinica, 23:472480.Google Scholar
LoDuca, S. T. 1990. Medusaegraptus mirabilis as a dasyclad alga. Journal of Paleontology, 64:469474.Google Scholar
LoDuca, S. T. 1995. Thallophytic-alga-dominated biotas from the Silurian Lockport Group of New York and Ontario; Northeastern Geology and Environmental Sciences, 17:371383.Google Scholar
LoDuca, S.T. 1997. The green alga Chaetocladus (Dasycladales). Journal of Paleontology, 71:940949.Google Scholar
LoDuca, S.T. 1998. Noncalcified thallophytic algae in the fossil record. Geological Society of America Program with Abstracts, Volume 30, 7: 385.Google Scholar
LoDuca, S.T., and Brett, C. E. 1997. The Medusaegraptus epibole and Ludlovian Konservat-Lagerstätten of eastern North America, p. 369405. In Brett, C. E. and Baird, G. (eds.), Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications. Columbia University Press, New York.Google Scholar
LoDuca, S.T., Kluessendorf, J., and Mikulic, D. G. 1999. Noncalcified dasyclad algae from the Silurian (Llandoverian) of Illinois and Wisconsin. Geological Society of America Program with Abstracts, Volume 31, 5:31.Google Scholar
Menzel, D., Kazlauskas, R., and Reichelt, J. 1983. Coumarins in the siphonalean green algal family Dasycladaceae Kützig (Chlorophyceae). Botanica Marina, 26:2329.Google Scholar
Mikulic, D. G., Briggs, D. E. G., and Kluessendorf, J. 1985a. A Silurian soft-bodied biota. Science, 228:715717.Google Scholar
Mikulic, D. G., Briggs, D. E. G., and Kluessendorf, J. 1985b. A new exceptionally preserved biota from the Lower Silurian of Wisconsin, U.S.A. Philosophical Transactions of the Royal Society of London B, 311:7585.Google Scholar
Mikulic, D. G., and Kluessendorf, J. 1998. Sequence stratigraphy and depositional environments of the Silurian and Devonian rocks of southeastern Wisconsin. Fall Field Conference for the Joint Meeting of the Society of Economic Paleontologists and Mineralogists Great Lakes Section and the Michigan Basin Geological Society, 84 p.Google Scholar
Morellet, L., and Morellet, J. 1918. Observations sur le genre Clypeina Michelin. Bulletin de la Société Géologique de France, 18:102105.Google Scholar
Nishimura, N. J., and Mandoli, D. F. 1992. Vegetative growth of Acetabularia acetabulum (Chlorophyta): structural evidence for juvenile and adult phases in development. Journal of Phycology, 28:669677.Google Scholar
Nitecki, M. H. 1976. Ordovician Batophoreae (Dasycladales) from Michigan. Fieldiana (Geology), 35:2940.Google Scholar
Nitecki, M. H., and Spjeldnaes, N. 1993. Silurian noncalcareous algae from Gotland, p. 345351. In Barattolo, F., DeCastro, P., and Parente, M. (eds.), Studies on Fossil Benthic Algae. Bollettino della Società Paleontologica Italiana, Special Volume 1.Google Scholar
Olsen, J. L., Stam, W., Berger, S., and Menzel, D. 1994. 18S rDNA and evolution in the Dasycladales (Chlorophyta): modern living fossils. Journal of Phycology, 30:729744.Google Scholar
Pascher, A. 1931. Systematische Übersicht über die mit Flagellaten in Zusammenhang stehenden Algenreihen und Versuch einer Einreihung dieser Algenstamme in die Stämme des Pflanzenreiches. Botanisches Centralblatt, Beiheft, 48:317332.Google Scholar
Pia, J. 1920. Die Siphoneae verticillatae vom Karbon bis zur Kreide. Abhandlungen Zoologisch-Botanische Gesellschaft in Wien, 11–1–263.Google Scholar
Pohlman, J. 1886. Fossils from the Waterlime Group near Buffalo. Bulletin of the Buffalo Society of Natural History, 5:2333.Google Scholar
Ruedemann, R. 1909. Some marine algae from the Trenton Limestone of New York. New York State Museum Annual Report 62 for 1908, p. 194210.Google Scholar
Ruedemann, R. 1925. Some Silurian (Ontarian) faunas of New York. New York State Museum Bulletin 265, 84 p.Google Scholar
Solms-Laubach, H. Graf zu. 1895. Monograph of the Acetabularieae. Transactions of the Linnean Society of London 2 (Botany), 5:139.Google Scholar
Spencer, J. 1884. Niagaran fossils. Transactions of the Academy of Science of St. Louis, 4:555610.Google Scholar
Spjeldnaes, N., and Nitecki, M. H. 1990. Anatomy and relationship of the Ordovician algal genus Apidium. Institutt for Geologi Universitetet Oslo Intern Skriftser, 61:137.Google Scholar
Steinmann, G. 1899. Ueber fossile Dasycladaceen vom Cerro Escamela, Mexico. Botanische Zeitung, 57:137154.Google Scholar
Taylor, T. N., and Taylor, E. L. 1993. The Biology and Evolution of Fossil Plants. Prentice Hall, Englewood Cliffs, New Jersey, 982 p.Google Scholar
van den Hoek, C., Mann, D. G., and Jahns, H. M. 1995. Algae: An Introduction to Phycology. Cambridge University Press, Cambridge, 623 p.Google Scholar
Valet, G. 1968. Contribution à l'étude des Dasycladales: I. Morphogenèse, Nova Hedwigia, 16:2182.Google Scholar
Whitfield, R. P. 1894. On new forms of marine algae from the Trenton Limestone with observations of Buthograptus laxus Hall. American Museum of Natural History Bulletin, 6:351358.Google Scholar
Wilson, A. 1948. Miscellaneous classes of fossils, Ottawa Formation, Ottawa-St. Lawrence Valley. Canada Department of Mines and Resources, Geological Survey Bulletin No. 11, 166 p.Google Scholar