Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T12:29:38.009Z Has data issue: false hasContentIssue false

New Miocene oak galls (Cynipini) and their bearing on the history of cynipid wasps in western North America

Published online by Cambridge University Press:  14 July 2015

Diane M. Erwin
Affiliation:
Museum of Paleontology, University of California, Berkeley 94720,
Katherine N. Schick
Affiliation:
Essig Museum of Entomology, University of California, Berkeley 94720,

Abstract

Two leaves of Quercus simulata Knowlton from the Miocene of Oregon each show a new type of cynipid gall. Antronoides cyanomontanus n. sp. is described from six elongate and narrowly spindle-shaped galls, 7.0 mm long, and 2.0 mm wide tapering to a narrow tip. They have expanded rim-like bases with most galls scattered throughout the midsection adjacent to or partially straddling a secondary vein. Antronoides oregonensis n. sp. is known from 20 galls, 4.0-5.0 mm long, 1.8-2.0 mm wide and weakly clavate, appearing C-shaped with a rounded apex and circular to oval-shaped base. Galls occur primarily in the basal third of the leaf in a single file along each side of the midrib. Contrary to previous studies, we found A. schorni Waggoner and Poteet, A. polygonalis Waggoner, and A. cyanomontanus to be morphologically closer to Cynips cornifex Hartig on Q. pubescens (European white oak), whereas the new gall A. oregonensis most closely resembles X. clavuloides. The presence of Antronoides indicates the evolution and dispersal of Cynipini wasps was well underway in western North America by the Miocene. However, the new galls leave open the possibility that X. clavuloides and related species may have evolved during the Paleogene in higher-latitude mesic forests of western North America, rather than in the southern Great Basin as suggested by Kinsey and Waggoner and Poteet.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamson, W. G., Melika, G., Scafford, R., and Csóka, G. 1998. Gall-inducing insects provide insights into plant systematic relationships. American Journal of Botany, 85:11591165.CrossRefGoogle ScholarPubMed
Ashmead, W. H. 1899. Hymenoptera. Journal of the New York Entomological Society, 7(1):4560.Google Scholar
Ashmead, W. H. 1903. Classification of the gall-wasps and the parasitic cynipoids, or the superfamily Cynipoidea. I. Psyche, 10:713.CrossRefGoogle Scholar
Askew, R. R. 1984. The biology of gall wasps, p. 223271. In Ananthakrishinan, T. N. (ed.), Biology of Gall Insects. Oxford, New Delhi.Google Scholar
Axelrod, D. I. 1956. Mio-Pliocene floras from west-central Nevada. University of California Publications in Geological Sciences, 33:1322.Google Scholar
Axelrod, D. I. 1983. Biogeography of oaks in the Arcto-Tertiary province. Annals of the Missouri Botanical Gardens, 70:629657.CrossRefGoogle Scholar
Axelrod, D. I. 1985. Miocene floras from the Middlegate Basin, west-central Nevada. University of California Publications in Geological Sciences, 129:1279.Google Scholar
Axelrod, D. I. 1991. The early Miocene Buffalo Canyon flora of western Nevada. University of California Publications in Geological Sciences, 135:176.Google Scholar
Axelrod, D. I. 1995. The Miocene Purple Mountain flora of western Nevada. University of California Publications in Geological Sciences, 139:162.Google Scholar
Axelrod, D. I. 1998. The Oligocene Haynes Creek flora of eastern Idaho. University of California Publications in Geological Sciences, 143:199.Google Scholar
Axelrod, D. I. 2000. A Miocene (10-12 Ma) Evergreen Laurel-Oak forest from Carmel Valley, California. University of California Publications in Geological Sciences, 145:134.Google Scholar
Axelrod, D. I., and Schorn, H. E. 1994. The 15 Ma floristic crisis at Gilliam Spring, Washoe County, northwestern Nevada. PaleoBios, 16(2):110.Google Scholar
Bailey, L. H. 1917. Standard Cyclopedia of Horticulture. New York, 6:3569.Google Scholar
Beutenmüller, W. 1913. Descriptions of new Cynipidae. Transactions of the American Entomological Society, 39:243248.Google Scholar
Blume, C. 1826. Bijdragen tot de Flora van Nederlandsch Indie, 10:526.Google Scholar
Boyer de Fonscolombe, E. 1832. Description des Insectes de la famille des Diplolépaires qui se trouvent aux environs d'Aix. Annales des Sciences Naturelles, 26:184198.Google Scholar
Burks, B. D. 1979. Superfamily Cynipoidea, p. 10451107. In Krombein, K. (ed.), Catalog of Hymenoptera in America North of Mexico, 1. Smithsonian Institution Press, Washington.Google Scholar
Camus, A. 1934-1954. Les chénes. Monographie du genre Quercus (et Lithocarpus), Volume 6–8. Académiedes Sciences, Paris, France.Google Scholar
Carruthers, W. 1862. Journal of the Linnean Society. Botany. London, 6:33.Google Scholar
Chaney, R. W. 1925. The Mascall flora—Its distribution and climatic relation. Carnegie Institute of Washington Publication, 349:2348.Google Scholar
Chaney, R. W., and Axelrod, D. I. 1959. Miocene floras from the Columbia Plateau. Carnegie Institute of Washington Publication, 617:1237.Google Scholar
Csóka, G. 1997. Gubacsok: Plant Galls. Forest Research Institute, Budapest, Hungary, 160 p.Google Scholar
Dailey, C. D., and Menke, A. S. 1980. Nomenclatorial notes on North American Cynipidae (Hymenoptera). Pan-Pacific Entomologist, 56:170174.Google Scholar
Draus, E., and Prothero, D. 2002. Magnetic stratigraphy of the Middle Miocene (early Barstovian) Mascall Formation, central Oregon. Geological Society of America Abstracts with Programs, 34(6):135136.Google Scholar
Dreger-Jauffret, F., and Shorthouse, J. D. 1992. Diversity of gallinducing insects and their galls, p. 833. In Shorthouse, Joseph D. and Rohfritsch, Odette (eds.), Biology of Insect-Induced Galls. Oxford University Press, New York.Google Scholar
Erwin, D. M., and Schorn, H. E. 2000. Revision of Lyonothamnus A. Gray (Rosaceae) from the Neogene of western North America. International Journal of Plant Sciences, 161(1):179193.CrossRefGoogle Scholar
Fields, P. F. 1996. The Succor Creek flora of the middle Miocene Sucker Creek Formation, southwestern Idaho and eastern Oregon: Systematics and Paleoecology. Ph.D. dissertation, Michigan State University, East Lansing, 674 p.Google Scholar
Hjelmquist, K. 1948. Botaniska Notiser, 2(1):117.Google Scholar
International Commission on Zoological Nomenclature (ICZN). 1999. International Code of Zoological Nomenclature = Code international de nomenclature zoologique (fourth edition). Natural History Museum, London, 306 p.Google Scholar
Kieffer, J. J. 1897. Nachtrag Zu Den Zoocecidien Lothringens. Berliner Entomologische Zeitschrift, 42:1724.CrossRefGoogle Scholar
Kinsey, A. C. 1930. The gall wasp genus Cynips: A study in the origin of species. Indiana University Studies, 16(84-86), 577 p.Google Scholar
Knowlton, F. H. 1898. The fossil plants of the Payette Formation. In Lindgren, W. (ed.), The Mining Districts of the Idaho Basin and the Boise Ridge, Idaho. U.S. Geological Survey Annual Report, 18:721744.Google Scholar
Larew, H. G. 1987. Two cynipid wasp acorn galls preserved in the La Brea Tar Pits (early Holocene). Proceedings of the Entomological Society of Washington, 89(4):831833.Google Scholar
Larew, H. G. 1992. Fossil Galls, p. 5059. In Shorthouse, J. D. and Rohfritsch, O. (eds.), The Biology of Insect-Induced Galls. Oxford University Press, New York.Google Scholar
Lees, K. R. 1994. Magmatic and tectonic changes through time in Neogene volcanic rocks of the Vale area, Oregon, northwestern U.S.A. Unpublished Ph.D. dissertation, Open University, Milton Keynes, U.K., 283 p.Google Scholar
Lewis, S. E. 1985. Miocene insects from the Clarkia deposits of Northern Idaho, p. 245264. In Smiley, C. J. (ed.), Late Cenozoic history of the Pacific Northwest. California Academy of Sciences, San Francisco.Google Scholar
Liebmann, F. 1854. Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger og dets Midlemmers Arbeider. Copenhagen, 1854:173.Google Scholar
Liljeblad, J., and Ronquist, F. 1998. A phylogenetic analysis of higher-level gall wasp relationships (Hymenoptera: Cynipidae). Systematic Entomology, 23(3):229252.CrossRefGoogle Scholar
Liljeblad, J., Ronquist, F., Nieves-Aldrey, J., Fontal-Cazalla, F. M., Ros-Farré, P., and Pujade-Villar, J. 2002. Phylogeny of the oak gall wasps (Hymenoptera: Cynipidae), p. III, 1-80. In Liljeblad, J. (ed.), Phylogeny and Evolution of Gall Wasps (Hymenoptera: Cynipidae). Ph.D. dissertation, Stockholm University, 168 p.Google Scholar
Linnaeus, C. 1753. Species Plantarum, p. 997.Google Scholar
Linnaeus, C. 1758. Systema Naturae (tenth edition). Laurentii Salvii, Holmiae, 824 p.Google Scholar
Louden, J. C. 1830. Hortus Britannicus (Loudon) A catalogue, p. 385.Google Scholar
Lyon, R. J. 1996. New cynipid wasps from the southwestern United States (Hymenoptera: Cynipidae). Pan-Pacific Entomologist, 72(4):181192.Google Scholar
Mani, M. S. 1964. Ecology of Plant Galls. Junk, The Hague, 434 p.CrossRefGoogle Scholar
Manos, P. S., and Standford, A. M. 2001. The historical biogeography of Fagaceae: Tracking the Tertiary history of temperate and subtropical forests of the Northern Hemisphere. International Journal of Plant Sciences, 162(6 Suppl.):S77S93.CrossRefGoogle Scholar
Manos, P. S., Doyle, J. J., and Nixon, K. C. 1999. Phylogeny, biogeography, and processes of molecular differentiation in Quercus sub-genus Quercus (Fagaceae). Molecular Phylogenetics and Evolution, 12(3):333349.CrossRefGoogle Scholar
Manos, P. S., Zhou, Z.-K., and Cannon, C. H. 2001. Systematics of Fagaceae: Phylogenetic tests of reproductive trait evolution. International Journal of Plant Sciences, 162:13611379.CrossRefGoogle Scholar
Mccracken, I., and Egbert, D. 1922. California gall-making Cynipidae with descriptions of new species, Stanford University Publications, University Series Biological Sciences, 3(1):170.Google Scholar
Melika, G., and Abrahamson, W. G. 2002. Review of the world genera of oak cynipid wasps (Hymenoptera: Cynipidae: Cynipini), p. 150190. In Melika, G. and Thuroczy, C. (eds.), Parasitic Wasps: Evolution, Systematics, Biodiversity and Biological Control (14-17 May 2001, Koseg, Hungary).Google Scholar
Meyer, J. 1987. Plant Galls and Gall Inducers. Gebrüder Borntraeger, Berlin, 291 p.Google Scholar
Nakai, T. 1924. Journal of the Arnold Arboretum, 5:74.Google Scholar
Née, L. 1801. Anales de Ciencias Naturales. Madrid, 3:277.Google Scholar
Niklas, K., and Giannasi, D. E. 1978. Angiosperm paleobiochemistry of the Succor Creek flora (Miocene), Oregon, USA. American Journal of Botany, 65:942952.CrossRefGoogle Scholar
Oersted, A. 1867. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i Kjobenhavn, 1866:77.Google Scholar
Oliver, E. 1934. A Miocene flora from the Blue Mountains, Oregon. Carnegie Institute of Washington Publication, 455:127.Google Scholar
Robyn, T. L. 1979. Miocene volcanism in eastern Oregon—An example of calc-alkaline volcanism unrelated to subduction. Journal of Volcanological and Geothermal Research, 5:149161.CrossRefGoogle Scholar
Ronquist, F. 1999. Phylogeny, classification and evolution of the Cynipoidea. Zoologica Scripta, 28:139164.CrossRefGoogle Scholar
Schick, K. N., and Dahlsten, D. L. 2003. Gallmaking and insects, p. 464466. In Resh, V. H. and Cardé, R. (eds.), Encyclopedia of Insects. Academic Press, Amsterdam.Google Scholar
Spach, E. 1841. Histoire Naturelle des Vegetaux. Phanerogames, 11:142, 185.Google Scholar
Stone, G. N., and Cook, J. M. 1998. The structure of cynipid oak galls: Patterns in the evolution of an extended phenotype. Proceedings of the Royal Society of London, 265:979988.CrossRefGoogle Scholar
Stone, G. N., Schönrogge, K., Atkinson, R. J., Bellido, D., and Pujade-Villar, J. 2002. The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annual Review of Entomology, 47:633668.CrossRefGoogle ScholarPubMed
Streck, M., and Ferns, M. 2005. The Rattlesnake Tuff and other Miocene silicic volcanism in eastern Oregon, p. 419. In Haller, K. M. and Wood, S. H. (eds.), Geological fieldtrips in southern Idaho, eastern Oregon, and northern Nevada. U.S. Geological Survey Open-File Report 2004-1222.Google Scholar
Swisher, C. C. III 1992. 40Ar/39Ar dating and its application to the calibration of North American land mammal ages. Unpublished Ph.D. dissertation, University of California, Berkeley, 239 p.Google Scholar
Tavares, Joaquim da Silva. 1902. As Zoocecidias Portuguezas: Enumeração das especies até agora encontradas em Portugal e descripção de dezesete novas, Annaes de Sciencas Naturaes, Porto 7:15108.Google Scholar
Tedford, R. H., Albright III, B., Barnosky, A. D., Ferrusquia-Villafranca, I., Hunt, R. M., Storer, J. E., Swisher, C. C. III, Voorhies, M. R., Webb, S. D., and Whistler, D. 2004. Mammalian biochronology of the Arikareean through Hemphillian interval (Late Oligocene through Early Pliocene epochs), p. 169231. In Woodburne, M. O. (ed.), Late Cretaceous and Cenozoic Mammals of North America. Columbia University Press, New York.CrossRefGoogle Scholar
Thayer, T. P. 1957. Some relations of later Tertiary volcanology and structure in eastern Oregon. Abstracts 20th International Geological Congress, Mexico City, 1:231245.Google Scholar
Waggoner, B. M. 1999. Fossil oak leaf galls from the Stinking Water paleoflora of Oregon (middle Miocene). PaleoBios, 19(3):814.Google Scholar
Waggoner, B. M., and Poteet, M. F. 1996. Unusual oak leaf galls from the middle Miocene of northwestern Nevada. Journal of Paleontology, 70:10801084.CrossRefGoogle Scholar
Walker, G. W. 1990a. Overview of the Cenozoic geology of the Blue Mountains region, p. 111. In Walker, G. W. (ed.), Geology of the Blue Mountains region of Oregon, Idaho, and Washington: Cenozoic Geology of the Blue Mountains Region. U.S. Geological Survey Professional Paper, 1437.Google Scholar
Walker, G. W. 1990b. Miocene and younger rocks of the Blue Mountains region, exclusive of the Columbia River Basalt Group and associated mafic lava flows, p. 101118. In Walker, G. W. (ed.), Geology of the Blue Mountains region of Oregon, Idaho, and Washington: Cenozoic Geology of the Blue Mountains Region. U.S. Geological Survey Professional Paper, 1437.Google Scholar
Walker, G. W., and Robinson, P. T. 1990. Cenozoic tectonism and volcanism of the Blue Mountains region, p. 119135. In Walker, G. W. (ed.), Geology of the Blue Mountains region of Oregon, Idaho, and Washington: Cenozoic Geology of the Blue Mountains Region. U.S. Geological Survey Professional Paper, 1437.Google Scholar
Weld, L. H. 1957. Cynipid galls of the pacific slope (Hymenoptera, Cynipoidea): An aid to their identification. Privately printed, Ann Arbor, Michigan, 64 p.Google Scholar
Westwood, J. O. 1840. An introduction to the modern classification of insects: Founded on the natural habits and corresponding organisation of the different families. Volume II. Longman, Orme, Brown, Green and Longmans, London, 587 p.Google Scholar
Wilf, P. 1997. When are leaves good thermometers?: A new case for leaf margin analysis. Paleobiology, 23:373390.CrossRefGoogle Scholar
Wilf, P., Wing, S. L., Greenwood, D. R., and Greenwood, C. L. 1998. Using fossil leaves as paleoprecipitation indicators: An Eocene example. Geology, 26:203206.2.3.CO;2>CrossRefGoogle Scholar
Wilf, P., Labandeira, C. C., Johnson, K. R., Coley, P. D., and Cutter, A. D. 2001. Insect herbivory, plant defense, and early Cenozoic climate change. Proceedings of the National Academy of Sciences, 98:62216226.CrossRefGoogle ScholarPubMed
Willdenow, C. 1796. Berlinische Baumzucht, oder Beschreibung der in den Gärten um Berlin, im Frein ausdauernden Bäume und Sträucher, für Gartenliebhaber und Freunde de Botanik, von Carl Ludwig Willdenow. Berlin, p. 279.Google Scholar
Wolfe, J. A. 1964. Miocene floras from Fingerrock Wash, Southwestern Nevada. U.S. Geological Survey Professional Paper, 454-N, 36 p.CrossRefGoogle Scholar
Wolfe, J. A. 1993. A method for obtaining climatic parameters from leaf assemblages. U.S. Geological Survey Bulletin, 2040, 71 p.Google Scholar
Wolfe, J. A. 1995. Paleoclimatic estimates for Tertiary leaf assemblages. Annual Review of Earth and Planetary Sciences, 24:119142.CrossRefGoogle Scholar
Woodburne, M. O., and Swisher, C. C. III. 1995. Land mammal high-resolution geochronology, intercontinental overland dispersals, sea level, climate, and vicariance, p. 337364. In Berggren, W. A., Kent, D. V., Aubry, M. P., and Hardenbol, J. (eds.), Geochronology, Time Scales and Global Stratigraphic Correlations: Unified Temporal Framework for an Historical Geology. SEPM Special Publication, 54.Google Scholar