Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T12:08:07.641Z Has data issue: false hasContentIssue false

New Lower and Middle Ordovician stelleroids (Echinodermata) and their bearing on the origins and early history of the stelleroid echinoderms

Published online by Cambridge University Press:  20 May 2016

Daniel B. Blake
Affiliation:
Department of Geology, University of Illinois, Urbana 61801
Thomas E. Guensburg
Affiliation:
Department of Physical Science, Rock Valley College, Rockford, Illinois 61111

Abstract

Ophioxenikos langenheimi n. gen. and sp. (class Somasteroidea), Stibaraster ratcliffei n. gen. and sp., and Cnemidactis? macroadambulacralatus n. sp. (both class Asteroidea) are new stelleroid echinoderms described from Lower and Middle Ordovician strata of the western United States. Stibaraster clearly is at the asteroid grade of organization, although an early representative of the class. Ophioxenikos is the first fossil somasteroid recognized from beyond Europe. It is similar to Chinianaster and Villebrunaster, ambulacral characters of all three suggest affinities with ophiuroids. Cnemidactis? is recognized from North America; it is unusual in the presence of proportionately large marginal ossicles. An indeterminate species is unusual in its structural parallels with living taxa. In recent years, the possibility that edrioasteroids were ancestral to stelleroids has been revived. Supporting arguments for this hypothesis neglect important differences; ancestry of stelleroids remains uncertain.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blainville, H. M. de. 1830. Zoophytes. Dictionnaire des Sciences Naturalles, Paris, 60 p.Google Scholar
Blake, D. B. 1982. Somasteroidea, Asteroidea, and the affinities of Luidia (Platasterias) latiradiata . Palaeontology, 25:167191.Google Scholar
Blake, D. B. 1989. Asteroidea: functional morphology, classification and phylogeny, p. 309314. In Jangoux, M. and Lawrence, J. M. (eds.), Echinoderm Studies 3. A. A. Balkema, Rotterdam.Google Scholar
Blake, D. B., and Guensburg, T. E. 1989. Two new multiarmed Paleozoic (Mississippian) asterids (Echinodermata) and some paleobiologic implications. Journal of Paleontology, 63:331340.Google Scholar
Byrd, W. J. 1970. Geology of the Ely Springs Range, Lincoln County, Nevada. Earth Science Bulletin, 3(2):2332.Google Scholar
Fell, H. B. 1963a. The phylogeny of sea-stars. Philosophical Transactions of the Royal Society, London, Series B, 246:386435.Google Scholar
Fell, H. B. 1963b. A new family and genus of Somasteroidea. Transactions of the Royal Society of New Zealand, Zoology, 3:143146.Google Scholar
Gislén, T. 1924. Echinoderm studies. Zoologiska Bidrag fran Uppsala, 9:1316.Google Scholar
Hintze, L. 1952. Lower Ordovician trilobites from western Utah and eastern Nevada. Utah Geological and Mineralogical Survey Bulletin 48, 249 p.Google Scholar
Hintze, L. 1973. Lower and Middle Ordovician stratigraphic sections in the Ibex area, Millard County, Utah. Brigham Young University Geology Studies, 20:336.Google Scholar
Lawrence, J. 1987. A Functional Biology of Echinoderms. Croom Helm, London, 340 p.Google Scholar
Madsen, F. J. 1966. The Recent sea-star Platasterias and the fossil Somasteroidea. Nature, 209:1367.Google Scholar
Paul, C. R. C., and Smith, A. B. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews, 46:157200.Google Scholar
Smith, A. B. 1984. Classification of the Echinodermata. Palaeontology, 27:431459.Google Scholar
Smith, A. B. 1985. Cambrian eleutherozoan echinoderms and the early diversification of edrioasteroids. Palaeontology, 28:715756.Google Scholar
Smith, A. B. 1988a. Patterns of diversification and extinction in early Palaeozoic echinoderms. Palaeontology, 31:799828.Google Scholar
Smith, A. B. 1988b. Fossil evidence for the relationships of extant echinoderm classes and their times of divergence, p. 8597. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
Smith, A. B., and Jell, P. A. 1990. Cambrian edrioasteroids from Australia and the origins of the starfishes. Memoirs of the Queensland Museum, 28:715778.Google Scholar
Spencer, W. K. 1918. British Palaeozoic Asterozoa. Palaeontographical Society, Monographs, p. 109168.Google Scholar
Spencer, W. K. 1951. Early Palaeozoic starfish. Philosophical Transactions of the Royal Society, London, Series B, 235:87129.Google ScholarPubMed
Spencer, W. K., and Wright, C. W. 1966. Asterozoans, p. U4U107. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. U, Echinodermata 3. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Stanley, S. M. 1986. Earth and Life Through Time. W. H. Freeman and Company, New York, 690 p.Google Scholar
Ubaghs, G. 1967. General characters of Echinodermata, p. S3S60. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. S, Echinodermata 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ubaghs, G. 1971. Diversité et spécialisation des plus anciens échinodermes que l'on connaisse. Biological Reviews, 46:157200.Google Scholar
Ubaghs, G. 1975. Early Paleozoic echinoderms. Annual Review of the Earth & Planetary Sciences, 3:7997.Google Scholar