Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T18:26:31.579Z Has data issue: false hasContentIssue false

A new hybodont shark (Chondrichthyes, Elasmobranchii) from the Upper Triassic Tiki Formation of India with remarks on its dental histology and biostratigraphy

Published online by Cambridge University Press:  11 October 2017

Mohd Shafi Bhat*
Affiliation:
Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India 〈[email protected]〉, 〈[email protected]
Sanghamitra Ray
Affiliation:
Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India 〈[email protected]〉, 〈[email protected]
P. M. Datta
Affiliation:
Greenwood Housing Cooperative Society Limited, 315B Upen Banerjee Road, Kolkata 700060, India 〈[email protected]
*
*Corresponding author

Abstract

A new lonchidiid genus, Pristrisodus, from the Upper Triassic Tiki Formation of India is described based on multiple, well-preserved, isolated teeth. Comparative analysis resulted in synonymizing Parvodus tikiensis and Lissodus duffini, which are known from the same horizon and resulted in a new taxon, Pristrisodus tikiensis n. comb. These teeth are elongated with mesiodistal length greater than or equal to twice the labiolingual width and have a high principal cusp, lateral cusplets, a distinct ridge near the crown-root junction labially and higher up on the crown lingually, weak ornamentation, and linear depression along the crown-root junction. Five morphotypes based on overall shape, robustness and crown height are determined. The teeth show a gradual monognathic heterodonty. The anterolateral teeth (morphotypes I−II) have high, pyramidal principal cusp with two or three small but pointed cusplets, and triangular labial and lingual protuberance. The posterolateral teeth (morphotypes III−IV) have four incipient cusplets, relatively low principal cusp, bilobed/rounded, hanging labial and incipient lingual protuberances. Morphotype V comprises anterior teeth that are broad, triangular and robust, and have rounded/blunt principal cusp, one cusplet, and low, hanging labial peg. Multivariate analyses corroborate the qualitative assessment of the Indian hybodonts. Dental histology of Pristrisodus n. gen., shows that it is distinctly different from other lonchidiid genera. The assemblage of freshwater sharks, along with other vertebrate microfossils of the Tiki Formation, shows similarity with that of the lower Tecovas Formation of the Chinle Group, USA. The euryhaline nature resulted in the adaptation of the hybodonts to freshwater systems in India during the Carnian.

Type
Articles
Copyright
Copyright © 2017, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansorge, J., 1990, Fischreste (Selachii, Actinopterygii) aus der Wealdentonscholle von Lobber Ort (Mönchgut/Rügen/DDR): Paläontologische Zeitschrift, v. 64, p. 133144.CrossRefGoogle Scholar
Bandyopadhyay, S., 1999, Gondwana vertebrate faunas of India: Proceedings of the Indian National Science Academy, v. 65, p. 285313.Google Scholar
Bandyopadhyay, S., 2011, Non-marine Triassic vertebrates of India, in Calvo, J.O., Porfiri, J., Gonzalez, B., and Santos, D.D., eds., Paleontología y Dinosaurios desde América Latina: EDIUNC, Editorial de la Universidad Nacional de Cuyo, Mendoza, Argentina, p. 3346.Google Scholar
Becker, M.A., Chamberlain, J.A., and Terry, D.O., 2004, Chondrichthyans from the Fairpoint Member of the Fox Hills Formation (Maastrichtian), Meade County, South Dakota: Journal of Vertebrate Paleontology, v. 24, p. 780793.Google Scholar
Bhat, M.S., 2015, A new and diverse late Triassic fish assemblage from India: International conference on current perspectives and emerging issues in Gondwana evolution, Lucknow, India, Abstract Volume, p. 22.Google Scholar
Bhat, M.S., 2017, Techniques for systematic collection and processing of vertebrate microfossils from their host mudrocks: a case study from the Upper Triassic Tiki Formation of India: Journal of the Geological Society of India, v. 89, p. 369374.Google Scholar
Bhat, M.S., Ray, S., and Datta, P.M., 2015, Small archosauriform teeth from the Late Triassic of India: implications on early radiation of the dinosaurs: XXV Indian Colloquium on Micropaleontology and Stratigraphy, Aurangabad, India, Abstract Volume, p. 7071.Google Scholar
Bhat, M.S., Ray, S., and Datta, P.M., 2017, Multivariate analyses reveal a new assemblage of diverse and small archosauriforms (Reptilia, Diapsida) from the Upper Triassic of India: Geophysical Research Abstracts Volume 19, EGU2017-18516, European Geosciences Union General Assembly 2017.Google Scholar
Błażejowski, B., 2004, Shark teeth from the Lower Triassic of Spitsbergen and their histology: Polish Polar Research, v. 25, p. 153167.Google Scholar
Bonaparte, C.L.J., 1838, Selachorum tabula analytica: NuoviAnnali delle Scienze Naturali Bologna, v. 1, p. 195214.Google Scholar
Broom, R., 1909, The fossil fishes of the Upper Karroo Beds of South Africa: Annals of South African Museum, v. 7, p. 251269.Google Scholar
Burmeister, K.C., Flynn, J.J., Parrish, J.M., and Wyss, A.R., 2006, Paleogeographic and biostratigraphic implications of new Early Mesozoic terrestrial vertebrate fossils from Poamay, central Morondava Basin, Madagascar, in Harris, J.D., Lucas, S.G., Spielmann, J.A., Lockley, M.G., Milner, A.R.C., and Kirkland, J.I., eds., The Triassic-Jurassic terrestrial transition: Bulletin of the New Mexico Museum of Natural History, v. 37, p. 457475.Google Scholar
Cappetta, H., 1987, Chondrichthyes II: Mesozoic and Cenozoic Elasmobranchii, in Schultze, H.-P., ed., Handbook of Paleoichthyology 3B: Stuttgart, Gustav Fischer Verlag, 193 p.Google Scholar
Cappetta, H., 2012, Chondrichthyes: Mesozoic and Cenozoic Elasmobranchii: Teeth, in Schultze, H.-P., ed., Handbook of Paleoichthyology 3E: Munich, Verlag Dr. Friedrich Pfeil, 512 p.Google Scholar
Carlson, S.J., 1989, Vertebrate dental structures, in Carter, J.G., ed., Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Vol. 1: New York, Van Nostrand Reinhold, p. 531556.Google Scholar
Chinsamy, A., and Raath, M.A., 1992, Preparation of fossil bone for histological study: Palaeontologia Africana, v. 29, p. 3944.Google Scholar
Cifelli, R.L., Madsen, S.K., and Larson, M.E., 1996, Techniques for recovery and preparation of microvertebrate fossils: Oklahama Geological Survey Special Publication, v. 96, p. 124.Google Scholar
Cuny, G., 2012, Freshwater hybodont shark in Early Cretaceous ecosystems: a review, in Godefroit, P., ed., Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems: Bloomington, Indiana University Press, p. 519529.Google Scholar
Cuny, G., Suteethorn, V., Kamha, S., Buffetaut, E., and Philippe, M., 2006, A new hybodont shark assemblage from the Lower Cretaceous of Thailand: Historical Biology, v. 18, p. 2131.CrossRefGoogle Scholar
Cuny, G., Suteethorn, V., Buffetaut, E., and Ouaja, M., 2007, Hybodont sharks from the Aptian–Albian of Tunisia and Thailand: Bulletin de la Société d’Etude des Sciences Naturelles d’Elbeuf, v. 1, p. 7185.Google Scholar
Datta, D., Mukherjee, D., and Ray, S., 2016, A new phytosaur (Diapsida; Archosauria) bonebed from the Late Triassic Tiki Formation of India: taphonomic signatures: 76th Annual Meeting of the Society of Vertebrate Paleontology, Salt Lake City, Utah, Program and Abstracts, 2016, p. 123.Google Scholar
Datta, P.M., 1981, The first Jurassic mammal from India: Zoological Journal of the Linnean Society of London, v. 73, p. 307312.Google Scholar
Datta, P.M., 2004, A suggestion for an early Tuvalian time segment for the Tiki Formation, South Rewa Gondwana Basin, India and other correlatable continental sequences: Albertina, v. 30, p. 67.Google Scholar
Datta, P.M., 2005, Earliest mammal with transversely expanded upper molar from the Late Triassic (Carnian) Tiki Formation, South Rewa Gondwana Basin, India: Journal of Vertebrate Paleontology, v. 25, p. 200207.Google Scholar
Datta, P.M., Yadagiri, P., and Rao, B.R.J., 1978, Discovery of Early Jurassic micromammals from Upper Gondwana sequence of Pranhita-Godavari Valley, India: Journal of the Geological Society of India, v. 19, p. 6468.Google Scholar
Datta, P.M., Das, D.P., and Luo, Z.X., 2004, A Late Triassic dromatheriid (Synapsida: Cynodontia) from India: Annals of the Carnegie Museum, v. 73, p. 7284.Google Scholar
Donath, K., 1995, Preparation of Histologic Sections: Hamburg, EXAKT–Kulzer Publication, 16 p.Google Scholar
Duffin, C.J., 1985, Revision of the hybodont selachian genus Lissodus Brough (1935): Palaeontographica A, v. 188, p. 105152.Google Scholar
Duffin, C.J., 1993, Mesozoic chondrichthyan faunas 1. Middle Norian (Upper Triassic) of Luxembourg: Palaeontographica A, v. 229, p. 1536.Google Scholar
Duffin, C., and Theis, D., 1997, Hybodont shark teeth from the Kimmeridgian (Late Jurassic) of northwest Germany: Geologica Palaeontologica, v. 31, p. 235256.Google Scholar
Duncan, M., 2004, Chondrichthyan genus Lissodus from the Lower Carboniferous of Ireland: Acta Palaeontologica Polonica, v. 49, p. 417428.Google Scholar
Fischer, J., 2008, Brief synopsis of the hybodont form taxon Lissodus Brough, 1935, with remarks on the environment and associated fauna: Freiberger Forschungshefte, v. 528C, p. 123.Google Scholar
Fischer, J., Schneider, J.W., and Ronchi, A., 2010, New hybondontoid shark from the Permo-Carboniferous (Gzhelian–Asselian) of Guardia Pisano (Sardinia, Italy): Acta Palaeontologica Polonica, v. 55, p. 241264.Google Scholar
Fischer, J., Voigt, S., Schneider, J.W., Buchwitz, M., and Voigt, S., 2011, A selachian freshwater fauna from the Triassic of Kyrgyzstan and its implication for Mesozoic shark nurseries: Journal of Vertebrate Paleontology, v. 31, p. 937953.Google Scholar
Francillon-Vieillot, H., Buffrénil, V., de, Castanet, J., Géraudie, J., Meunier, F.J., Sire, J.Y., Zylberberg, L.L., and Ricqlès, A., de, 1990, Microstructure and mineralization of vertebrate skeletal tissues, in Carter, J.G., ed., Skeletal Biomineralization: Patterns, Process and Evolutionary Trends: New York, Van Nostrand Reinhold, v. 1, p. 471530.Google Scholar
Ginter, M., Hairapetian, V., and Klug, C., 2002, Famennian chondrichthyans from the shelves of North Gondwana: Acta Geologica Polonica, v. 52, p. 169215.Google Scholar
Ginter, M., Hampe, O., and Duffin, C., 2010, Chondrichthyes: Paleozoic Elasmobranchii: Teeth, in Schultze, H.-P., ed., Handbook of Paleoichthyology 3D: München, Verlag Dr. Friedrich Pfeil, 168 p.Google Scholar
Gupta, A., 2009, Ichthyofauna of the Lower Triassic Panchet Formation, Damodar Valley basin, West Bengal, and its implications: Indian Journal of Geosciences, v. 63, p. 275286.Google Scholar
Hammer, Ø., and Harper, D., 2006, Palaeontological Data Analysis: Oxford, Blackwell Publishing, 351 p.Google Scholar
Hammer, Ø., Harper, D.A.T., and Ryan, P.D., 2001, PAST: palaeontological statistics software package for education and data analysis: Palaeontologia Electronica, v. 4, p. 19.Google Scholar
Heckert, A.B., 2004, Late Triassic microvertebrates from the Upper Triassic Chinle Group (Otischalkian–Adamanian: Carnian), southwestern U.S.A: Bulletin of the New Mexico Museum of Natural History and Science, v. 27, p. 1170.Google Scholar
Heckert, A.B., and Lucas, S.G., 2006, Micro- and small vertebrate biostratigraphy and biochronology of the Upper Triassic Chinle Group, southwestern USA, in Harris, J.D., Lucas, S.G., Spielmann, J.A., Lockley, M.G., Milner, A.R.C., and Kirkland, J.I., eds., The Triassic–Jurassic terrestrial transition: New Mexico Museum of Natural History and Science, v. 37, p. 94104.Google Scholar
Heckert, A.B., Ivanov, A., and Lucas, S.G., 2007, Dental morphology of the hybodontoid shark Lonchidion humblei Murry from the Upper Triassic Chinle Group, USA: New Mexico Museum of Natural History and Science Bulletin, v. 41, p. 4548.Google Scholar
Hendrickx, C., Mateus, O., and Araújo, R., 2015, The dentition of megalosaurid theropods: Acta Palaeontologica Polonica, v. 60, p. 627642.Google Scholar
Herman, J., 1977, Les Sélaciens des terrains néocrétacés et paléocènes de Belgique et des contrées limitrophes. Eléments d’une biostratigraphie intercontinentale: Mémoirs pour Servir à Explication des Cartes Géologiques et Minières de la Belgique, v. 15, p. 1450.Google Scholar
Hibbard, C.W., 1949, Techniques of collecting microvertebrate fossils: Contributions from the Museum of Paleontology, University of Michigan, v. 8, p. 719.Google Scholar
Hodnett, J.-P., Elliot, D.K., Olson, T.J., and Wittke, J.H., 2013, Ctenacanthiform sharks from the Permian Kaibab Formation, Northern Arizona: Historical Biology, v. 24, p. 381395.Google Scholar
Huxley, T.H., 1880, On the Application of the laws of evolution to the arrangement of the Vertebrata, and more particularly of the Mammalia: Proceedings of the Scientific Meetings of the Zoological Society of London, v. 43, p. 649662.Google Scholar
Jain, S.L., 1980, Freshwater xenacanthid (=pleuracanth) shark fossils from the Upper Triassic, Maleri Formation, India: Journal of the Geological Society of India, v. 21, p. 3947.Google Scholar
Jain, S.L., Robinson, P.L., and RoyChowdhury, T.K., 1964, A new vertebrate fauna from the Triassic of the Deccan: Quaternary Journal of the Geological Society of London, v. 120, p. 115124.Google Scholar
Johns, M.J., Albanesi, G.L., and Voldman, G.G., 2014, Freshwater shark teeth (Family Lonchidiidae) from the Middle–Upper Triassic (Ladinian–Carnian) Paramillo Formation in the Mendoza, Precordillera, Argentina: Journal of Vertebrate Paleontology, v. 34, p. 512523.Google Scholar
Johnson, G.D., 1981, Hybodontoidei (Chondrichthyes) from the Wichita-Albany Group (Early Permian) of Texas: Journal of Vertebrate Paleontology, v. 1, p. 141.Google Scholar
Johnson, G.D., 2003, Dentitions of Barbclabornia (new genus, Chondrichthyes: Xenacanthiformes) from the Upper Palaeozoic of North America: Mitteilungen aus dem Museum für Naturkunde in Berlin, Geowissenschaftliche Reihe, v. 6, p. 125160.Google Scholar
Klug, S., Tütken, T., Wings, O., Pfretzschner, H., and Martin, T., 2010, A Late Jurassic freshwater shark assemblage (Chondrichthyes, Hybodontiformes) from the southern Junggar Basin, Xinjiang, Northwest China: Palaeodiversity and Palaeoenvironments, v. 90, p. 241257.Google Scholar
Maisey, J.G., 1975, The interrelationships of phalacanthous selachians: Neues Jahrbuch für Geologie und Paläontologie Monatshefte, v. 9, p. 553567.Google Scholar
Maisey, J.G., 1983, Cranial anatomy of Hybodus basanus Egerton from the Lower Cretaceous of England: American Museum Novitates, v. 2758, p. 164.Google Scholar
Maisey, J.G., 1987, Cranial anatomy of the Lower Jurassic shark Hybodus reticulatus (Chondrichthyes: Elasmobranchii), with comments on hybodontid systematics: American Museum Novitates, v. 2878, p. 139.Google Scholar
Maisey, J.G., 1989, Hamiltonichthys mapesi, g. & sp. nov. (Chondrichthyes; Elasmobranchii), from the Upper Pennsylvanian of Kansas: American Museum Novitates, v. 2931, p. 142.Google Scholar
Manzanares, E., Pla, C., Martínez-Pérez, C., Ferrón, H., and Botella, H., 2016, Lonchidion derenzii, sp. nov., a new lonchidiid shark (Chondrichthyes, Hybodontiforms) from the Upper Triassic of Spain, with remarks on lonchidiid enameloid: Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2017.1253585 Google Scholar
Mukherjee, D., and Ray, S., 2014, A new Hyperodapedon (Archosauromorpha, Rhynchosauria) from the Upper Triassic of India: implications for rhynchosaur phylogeny: Palaeontology, v. 57, p. 12411276.Google Scholar
Mukherjee, D., Ray, S., Chandra, S., Pal, S., and Bandyopadhyay, S., 2012, Upper Gondwana succession of the Rewa basin, India: understanding the interrelationship of lithologic and stratigraphic variables: Journal of the Geological Society of India, v. 79, p. 563575.Google Scholar
Murry, P.A., 1981, A New species of freshwater hybodont from the Dockum Group (Triassic) of Texas: Journal of Paleontology, v. 55, p. 603607.Google Scholar
Owen, R., 1846, Lectures on the Comparative Anatomy and Physiology of the Vertebrate Animals. Delivered at the Royal College of Surgeons of England in 1844 and 1846. Part 1: Fishes: London, Longman, Brown, Green, and Longmans, 308 p.Google Scholar
Patnaik, R., 2003, Reconstruction of Upper Siwalik palaeoecology and palaeoclimatology using microfossil palaeocommunities: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 97, p. 133150.Google Scholar
Patterson, C., 1966, British Wealden sharks: Bulletin of the British Museum (Natural History), v. 11, p. 283350.Google Scholar
Prasad, G.V.R., and Cappetta, H., 1993, Late Cretaceous selachians from India and the age of the Deccan Traps: Palaeontology, v. 36, p. 231248.Google Scholar
Prasad, G.V.R., and Sahni, A., 1987, Coastal-plain microvertebrate assemblage from the terminal Cretaceous of Asifabad, Andhra Pradesh: Journal of the Palaeontological Society of India, v. 32, p. 519.Google Scholar
Prasad, G.V.R., Manhas, B.K., and Arratia, G., 2004, Elasmobranch and actinopterygian remains from the Jurassic and Cretaceous of India, in Arratia, G., and Tintori, A., eds., Mesozoic Fishes 3: Systematics, Paleoenvironments and Biodiversity: München, Germany, Verlag Dr. Friedrich Pfeil, p. 625638.Google Scholar
Prasad, G.V.R., Singh, K., Parmar, V., Goswami, A., and Sudan, C.S., 2008, Hybodont shark teeth from continental Upper Triassic deposits of India, in Arratia, G., Schultze, H.-P., and Wilson, M.V.H., eds., Mesozoic Fishes 4: Homology and Phylogeny: München, Germany, Verlag Dr. Friedrich Pfeil, p. 413432.Google Scholar
Ray, S., 2015, A new Late Triassic traversodontid cynodont (Therapsida, Eucynodontia) from India: Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2014.930472.Google Scholar
Ray, S., Bhat, M.S., Mukherjee, D., and Datta, P.M., 2016, Vertebrate fauna from the Late Triassic Tiki Formation of India: new finds and their biostratigraphic implications: Palaeobotanist, v. 65, p. 4759.Google Scholar
Reed, S.J.B., 2005, Electron Probe Analysis and Scanning Electron Microscopy in Geology: Cambridge, UK, Cambridge University Press, 189 p.Google Scholar
Rees, J., 2008, Interrelationships of Mesozoic hybodont sharks as indicated by dental morphology—preliminary results: Acta Geologica Polonica, v. 58, p. 217221.Google Scholar
Rees, J., and Underwood, C.J., 2002, The status of the shark genus Lissodus Brough, 1935, and the position of nominal Lissodus species within the Hybodontoidea (Selachii): Journal of Vertebrate Paleontology, v. 22, p. 471479.Google Scholar
Reif, W.E., 1973, Morphologie und Ultrastruktur des Hai−Schmelzes: Zoologica Scripta, v. 2, p 231250.Google Scholar
Sahni, M.R., and Tewari, A.P., 1958, New unionids from the Triassic (Gondwana) rocks of Tihki, Vindhya Pradesh and Maleri, Hyderabad, Deccan: Records of the Geological Survey of India, v. 87, p. 406417.Google Scholar
Sankey, J.T., 2008, Vertebrate Paleoecology from microsites, Talley Mountain, Upper Aguja Formation (Late Cretaceous), Big Bend National Park, Texas, in Sankey, J.T., and Baszio, S., eds., Vertebrate Microfossil Assemblages: Their Role in Paleoecology and Paleobiogeography: Bloomington, Indiana, Indiana University Press, p. 6177.Google Scholar
Sire, J.Y., Donoghue, P.C.J., and Vickaryous, M.K., 2009, Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates: Journal of Anatomy, v. 214, p. 409440.CrossRefGoogle ScholarPubMed
Shimada, K., 2002, Dental homologies in lamniform sharks (Chondrichthyes: Elasmobranchii): Journal of Morphology, v. 251, p. 3872.Google Scholar
Shimada, K., 2005, Types of tooth sets in the fossil record of sharks, and comments on reconstructing dentitions of extinct sharks: Journal of Fossil Research, v. 38, p. 141145.Google Scholar
Smith, J.B., 2005, Heterodonty in Tyrannosaurus rex: implications for the taxonomic and systematic utility of theropod dentitions: Journal of Vertebrate Paleontology, v. 25, p. 865887.Google Scholar
Smith, J.B., Vann, D.R., and Dodson, P., 2005, Dental morphology and variations in theropod dinosaurs: implications for the taxonomic identification of isolated teeth: Anatomical Record, v. 285A, p. 699736.Google Scholar
Stensiö, E.A., 1921, Triassic Fishes from Spitsbergen. Part IA: Vienna, 307 p.Google Scholar
Tanner, E.H., Spielmann, J.A., and Lucas, S.G., 2013, The Triassic System: new developments in Stratigraphy and Paleontology: Bulletin of the New Mexico Museum of Natural History and Science, v. 61, p. 1612.Google Scholar
Teixeira, C., 1956, Sur un hybodontide du Karroo del’Angola: Revista da Faculdade de Ciencias, Lisboa, Series C, Ciencias Naturais, v. 5, p. 135136.Google Scholar
Underwood, C.J., and Rees, J., 2002, Selachian faunas from the earliest Cretaceous Purbeck Group of Dorset, southern England: Special Papers in Palaeontology, v. 68, p. 107119.Google Scholar
Wang, N.-Z., Zhang, X., Zhu, M., and Zhao, W.-J., 2009, A new articulated hybodontoid from Late Permian of northwestern China: Acta Zoologica (Stockholm), v. 90, p. 159170.Google Scholar
Whitenack, L.B., and Gottfried, M.D., 2010, A morphometric approach for addressing tooth-based species delimitation in fossil mako sharks, Isurus (Elasmobranchii: Lamniformes): Journal of Vertebrate Paleontology, v. 30, p. 1725.Google Scholar
Yadagiri, P., 1986, Lower Jurassic lower vertebrates from Jurassic Kota Formation, Pranhita-Godavari Valley of India: Journal of the Palaeontological Society of India, v. 31, p. 8996.Google Scholar