Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-08T08:30:48.576Z Has data issue: false hasContentIssue false

New goniodomacean dinoflagellates with a compound hypotractal archeopyle from the late Cenozoic: Capisocysta Warny and Wrenn, emend.

Published online by Cambridge University Press:  14 July 2015

Martin J. Head*
Affiliation:
Department of Geology, Earth Sciences Centre, University of Toronto, Toronto, Ontario, M5S 3B1 Canada

Abstract

Two new species of dinoflagellate are described from the upper Cenozoic of the North Atlantic region. They are assigned to the goniodomacean genus Capisocysta Warny and Wrenn, 1997 emend., whose archeopyle uniquely forms by the extensive and exclusive dissociation of hypocystal plates. Capisocysta lata new species is recorded from the upper lower Pliocene Coralline Crag Formation of eastern England, the lower and upper Pliocene of the subsurface Great Bahama Bank, and as a living cyst from Phosphorescence Bay, Puerto Rico. Capisocysta lyellii new species is reported from the Coralline Crag Formation of eastern England. Capisocysta provides the only unambiguous example of a hypocystal archeopyle in the order Gonyaulacales and the only example of a hypotractal archeopyle in the division Dinoflagellata.

The spherical, proximate cysts have pre-formed lines of weakness that occur exclusively on the hypocyst, where they follow plate boundaries. Upon excystment, these sutures facilitate the separate release of plates 2–6″′, ps, 1p, and 1″″. Sulcal plates 1s and rs and postcingular plate 1″′ typically remain attached to the epicyst, forming a distinctive hyposulcal tab. The single antapical plate in C. lata is represented in C. lyellii by two plates (left and right first antapical homologues) that are released separately.

Capisocysta has a tropical to warm temperate distribution today. It thrived and perhaps formed blooms in tropical carbonate platform environments of the Bahamas during the Pliocene, and might prove to be a useful indicator of very warm intervals within the Pliocene of higher latitude regions including the southern North Sea basin.

To facilitate discussion of Capisocysta, several morphological terms have been modified or newly introduced. These terms more precisely describe archeopyle position and extent in dinoflagellates.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berggren, W. A., Kent, D. V., Swisher, C. C. III, and Aubry, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy, p. 129212. In Berggren, W. A., Kent, D. V., and Hardenbol, J. (eds.), Geochronology, Time Scales and Global Stratigraphic Correlation. SEPM Special Publication, 54. SEPM (Society for Sedimentary Geology), Tulsa, Oklahoma.Google Scholar
Bütschli, O. 1885. Erster Band. Protozoa, p. 8651088. In Dr. H. G. Bronn's Klassen und Ordnungen des Thier-Reiches, wissenschaftlich dargestellt in Wort und Bild. C. F. Winter'sche Verlagshandlung, Leipzig and Heidelberg.Google Scholar
Dale, B. 1983. Dinoflagellate resting cysts: benthic plankton, p. 69136. In Fryxell, G. A. (ed.), Survival Strategies of the Algae. Cambridge University Press, Cambridge, U.K.Google Scholar
Davey, R. J., and Williams, G. L. 1966. The genus Hystrichosphaeridium and its allies, p. 53106. In Davey, R. J., Downie, C., Sarjeant, W. A. S., and Williams, G. L., Studies on Mesozoic and Cainozoic Dinoflagellate Cysts. Bulletin of the British Museum (Natural History) Geology, Supplement 3.Google Scholar
De Verteuil, L., and Norris, G. 1996a. Middle to upper Miocene Geonettia clineae, an opportunistic coastal embayment dinoflagellate of the Homotryblium Complex. Micropaleontology, 42:263284.CrossRefGoogle Scholar
De Verteuil, L., and Norris, G. 1996b. Part II. Homology and structure in dinoflagellate cyst terminology, p. 83172. In de, L.Verteuil, L. and Norris, G., Miocene Dinoflagellate Stratigraphy and Systematics of Maryland and Virginia. Micropaleontology, 42(supplement).Google Scholar
Dörhöfer, G., and Davies, E. H. 1980. Evolution of archeopyle and tabulation in rhaetogonyaulacinean dinoflagellate cysts. Life Sciences Miscellaneous Publications, Royal Ontario Museum, 91 p.CrossRefGoogle Scholar
Drugg, W. S. 1970. Some new genera, species, and combinations of phytoplankton from the Lower Tertiary of the Gulf Coast, U.S.A. North American Paleontological Convention, Chicago, September 1969, Proceedings, Part G:809843.Google Scholar
Eberli, G. P., Swart, P. K., McNeill, D. F., Kenter, J. A. M., Anselmetti, F. S., Melim, L. A., and Ginsburg, R. N. 1997. A synopsis of the Bahamas Drilling Project: results from two deep core borings drilled on the Great Bahama Bank, p. 2341. In Eberli, G. P., Swart, P. K., Malone, M. J., et al., Proceedings of the Ocean Drilling Program, Initial Reports, 166. Ocean Drilling Program, College Station, Texas.CrossRefGoogle Scholar
Evitt, W. R. 1985. Sporopollenin Dinoflagellate Cysts: Their Morphology and Interpretation. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas, 333 p.Google Scholar
Evitt, W. R., Lentin, J. K., Millioud, M. E., Stover, L. E., and Williams, G. L. 1977. Dinoflagellate cyst terminology. Geological Survey of Canada, Paper, 76-24:111.CrossRefGoogle Scholar
Fensome, R. A., Riding, J. B., and Taylor, F. J. R. 1996. Dinoflagellates, p. 107169. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, College Station, Texas, volume 1.Google Scholar
Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., and Williams, G. L. 1993. A Classification of Living and Fossil Dinoflagellates. Micropaleontology Special Publication Number 7, 351 p.Google Scholar
Harding, I. C., and Lewis, J. 1995. Siliceous dinoflagellate thecal fossils from the Eocene of Barbados. Palaeontology, 37:825840.Google Scholar
Head, M. J. 1996. Modern Dinoflagellate cysts and their biological affinities, p. 11971248. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, College Station, Texas, volume 3.Google Scholar
Head, M. J. 1997. Thermophilic dinoflagellate assemblages from the mid Pliocene of eastern England. Journal of Paleontology, 71:165193.CrossRefGoogle Scholar
Head, M. J. In press. Marine environmental change in the Pliocene and lower Pleistocene of eastern England: the dinoflagellate evidence reviewed. In Van Kolfschoten, T. and Gibbard, P. (eds.), The Dawn of the Quaternary. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO, 63.Google Scholar
Hodgson, G. E., and Funnell, B. M. 1987. Foraminiferal biofacies of the early Pliocene Coralline Crag, p. 4473. In Hart, M. B. (ed.), Micropalaeontology of Carbonate Environments. British Micropalaeontological Society Series. Ellis Horwood Ltd., Chichester, U.K.Google Scholar
Lefèvre, M. 1933. Recherches sur les péridiniens fossiles des Barbades. Bulletin, Muséum d'histoire naturelle, Paris, serie 2, 5:415418.Google Scholar
Lentin, J. K., and Williams, G. L. 1993. Fossil dinoflagellates: index to genera and species, 1993 edition. American Association of Stratigraphic Palynologists Contributions Series, 28, 856 p.Google Scholar
Levandowsky, M., and Kaneta, P. J. 1987. Behaviour in dinoflagellates, p. 360397. In Taylor, F. J. R. (ed.), The Biology of Dinoflagellates. Botanical Monographs Volume 21, Blackwell Scientific, Oxford, U.K.Google Scholar
Liengjarern, M., Costa, L., and Downie, C. 1980. Dinoflagellate cysts from the Upper Eocene-Lower Oligocene of the Isle of Wight. Palaeontology, 23:475499.Google Scholar
Lindemann, E. 1928. Abteilung Peridineae (Dinoflagellatae), p. 3104. In Engler, A. and Prantl, K. (eds.), Die Natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen. Zweite stark vermehrte und verbesserte Auflage herausgegeben von A. Engler. 2 Band. Wilhelm Engelmann, Leipzig.Google Scholar
Lyell, C. 1839. On the relative ages of the Tertiary deposits commonly called “Crag” in the counties of Norfolk and Suffolk. Proceedings of the Geological Society of London, 3:126130.Google Scholar
Manum, S. B., and Williams, G. L. 1995. Hypocystal archeopyles in the dinoflagellate cyst genus Caligodinium Drugg. Palynology, 19:183190.CrossRefGoogle Scholar
McLean, D. M. 1976. Eocladopyxis peniculatum Morgenroth, 1966, Early Tertiary ancestor of the modern dinoflagellate Pyrodinium bahamense Plate, 1906. Micropaleontology, 22, p. 347351.CrossRefGoogle Scholar
Morgenroth, P. 1966. Mikrofossilien und Konkretionen des nordwesteuropäischen Untereozäns. Palaeontographica, Abteilung B, 119:153.Google Scholar
Pascher, A. 1914. Über Flagellaten und Algen. Berichte der Deutschen Botanischen Gesellshaft, 36:136160.Google Scholar
Rossignol, M. 1962. Analyse pollinique de sédiments marins Quaternaires en Israël. II. Sédiments pléistocènes. Pollen et Spores, 4:121148.Google Scholar
Taylor, F. J. R. 1980. On dinoflagellate evolution. BioSystems, 13:65108.CrossRefGoogle ScholarPubMed
Wall, D. 1967. Fossil microplankton in deep-sea cores from the Caribbean Sea. Palaeontology, 10:95123.Google Scholar
Wall, D., and Dale, B. 1971. A reconsideration of living and fossil Pyrophacus Stein, 1883 (Dinophyceae). Journal of Phycology, 7:221235.CrossRefGoogle Scholar
Wall, D., Dale, B., Lohman, G. P., and Smith, W. K. 1977. The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic oceans and adjacent seas. Marine Micropaleontology, 2:121200.CrossRefGoogle Scholar
Warny, S. A., and Wrenn, J. H. 1997. New species of dinoflagellate cysts from the Bou Regreg Core: a Miocene-Pliocene boundary section on the Atlantic coast of Morocco. Review of Palaeobotany and Palynology, 96:281304.CrossRefGoogle Scholar
Westphal, H. 1997. Sediment input and diagenesis of periplatform carbonates on a leeward slope of Great Bahama Bank. Unpublished , , 163 p., plus 9 appendices.Google Scholar
Westphal, H., Reijmer, J. J. G., and Head, M. J. In press. Input and diagenesis on a carbonate slope (Bahamas): response to morphologic evolution and sea-level fluctuations. In Harris, P. M., Saller, A. H., Simo, T., and Handford, R. (eds.), Advances in Carbonate Sequence Stratigraphy—Application to Reservoirs, Outcrops and Models. SEPM Special Publications.Google Scholar
Williams, G. L., Sarjeant, W. A. S., and Kidson, E. J. 1978. A glossary of the terminology applied to dinoflagellate amphiesmae and cysts and acritarchs: 1978 edition. American Association of Stratigraphic Palynologists, Contributions Series, 2A, 121 p.Google Scholar
Wrenn, J. H., and Damassa, S. P. 1989. Tuberculodinium vancampoae: a curious reflection of its former self. Palynology, 13:289 (Abstract).Google Scholar
Wrenn, J. H., and Kokinos, J. P. 1986. Preliminary comments on Miocene through Pleistocene dinoflagellate cysts from De Soto Canyon, Gulf of Mexico, p. 169225. In Wrenn, J. H., Duffield, S. L., and Stein, J. A. (eds.), Papers from the First Symposium on Neogene Dinoflagellate Cyst Biostratigraphy. American Association of Stratigraphic Palynologists Contributions Series, 17.Google Scholar