Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T12:42:32.388Z Has data issue: false hasContentIssue false

A new Eocene species of the hermit-crab symbiont Hippoporidra (Bryozoa) from the Ocala limestone of Florida

Published online by Cambridge University Press:  20 May 2016

Paul D. Taylor
Affiliation:
Department of Palaeontology, The Natural History Museum, London SW7 5BD, United Kingdom,
Kevin S. Schindler
Affiliation:
Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, Arizona 86001,

Extract

Colonial metazoans that lived symbiotically with hermit-crabs create striking and distinctive fossils. Examples of such fossils recorded (Schindler and Portell, 1993) from Cenozoic deposits in Florida include the scleractinian coral Septastrea marylandica (Conrad, 1841) (see Darrell and Taylor, 1989), the hydrozoan Cystactinia ocalana Brooks, 1964, and the bryozoan Hippoporidra edax (Busk, 1859) [recorded as H. calcarea (Smitt) by Scolaro, 1970]. In all of these fossils, the symbiotic colony covers the entire external surface of a gastropod shell with a thick encrustation. Growth of the colony outwards from the shell aperture in the form of a helicospiral tube greatly extends the size of the chamber available for the hermit-crab occupant. In no known fossil examples of symbioses are the hermit-crabs preserved in situ. However, modern analogues, along with functional morphological considerations, provide good criteria for inferring that this peculiar colonial growth pattern occurred in response to the presence of a symbiotic hermit-crab, at least for examples within the Lower Jurassic-Recent range known for fossil hermit-crabs (see Walker, 1992; Taylor, 1994).

Type
Paleontological Notes
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brooks, H. K. 1964. Cystactinia ocalana species nov. Coelenterata: Hydrozoa: Hydroida: Hydractiniidae (Fossil). Pilot Register of Zoology, Card No. 10.Google Scholar
Busk, G. 1852. An account of the Polyzoa and Sertularian Zoophytes collected in the voyage of the Rattlesnake on the coast of Australia and the Louisiade Archipelago, p. 343402. In MacGillivray, J. (ed.), Narrative of the Voyage of H.M.S. Rattlesnake, commanded by the late Captain Owen Stanley, during the years 1846–1850, 1. Boone, London.Google Scholar
Busk, G. 1854. Catalogue of the Marine Polyzoa in the Collections of the British Museum. Part II. Cheilostomata (part). British Museum, London, p. iiiviii, 55–120.Google Scholar
Busk, G. 1859. A monograph of the fossil Polyzoa of the Crag. Monographs of the Palaeontographical Society, 136 p.Google Scholar
Cairns, S. D., and Macintyre, I. G. 1992. Phylogenetic implications of calcium carbonate mineralogy in the Stylasteridae (Cnidaria: Hydrozoa). Palaios, 7:96107.Google Scholar
Canu, F., and Bassler, R. S. 1920. North American Early Tertiary Bryozoa. Bulletin of the United States National Museum, 106:1879.Google Scholar
Canu, F., and Bassler, R. S. 1927. Classification of the cheilostomatous Bryozoa. Proceedings of the United States National Museum, 69(14):142.Google Scholar
Carter, H. J. 1882. Remarkable forms of Cellepora and Palythoa from the Senegambian coast. Annals and Magazine of Natural History, series 5, 9:416419.Google Scholar
Cheetham, A. H. 1963. Late Eocene zoogeography of the eastern Gulf Coast region. The Geological Society of America Memoir, 91:1113.Google Scholar
Chimonides, P. J., and Cook, P. L. 1981. Observations on living colonies of Selenaria (Bryozoa, Cheilostomata). II. Cahiers de Biologie Marine, 22:207219.Google Scholar
Conrad, T. A. 1841. Twenty-six new species of fossil shells, discovered in the Medial Tertiary deposits of Calvert Cliffs, Maryland. Proceedings of the Academy of Natural Sciences of Philadelphia, 1:2833.Google Scholar
Cook, P. L. 1964. Polyzoa from West Africa. Notes on the genera Hippoporina Neviani, Hippoporella Canu, Cleidochasma Harmer and Hippoporidra Canu & Bassler (Cheilostomata, Ascophora). Bulletin of the British Museum (Natural History), Zoology Series, 12:135.Google Scholar
Cook, P. L. 1968. Observations on living Bryozoa. Atti della Società Italiana di Scienze Naturali e del Museo Civico Storia Naturale di Milano, 108:155160.Google Scholar
Darrell, J. G., and Taylor, P. D. 1989. Scleractinian symbionts of hermit crabs in the Pliocene of Florida. Memoir of the Association of Australasian Palaeontologists, 8:115123.Google Scholar
Deichmann, E. 1954. The “Texas Longhorn Shells” from the Florida waters. The Nautilus, 67:7680.Google Scholar
Gautier, Y. V. 1962. Recherches écologiques sur les Bryozoaires Chilostomes Mediterranée Occidentale. Thèses présentées a la Faculté des Sciences de l'Université d'åix-Marseille, 91:9434.Google Scholar
Gordon, D. P. 1989. The marine fauna of New Zealand: Bryozoa: Gymnolaemata (Cheilostomida Ascophorina) from the western South Island continental shelf and slope. New Zealand Oceanographic Institute Memoir, 97:1158.Google Scholar
Håkansson, E. 1986. Somatic evolution as a possible mechanism in the calcite/aragonite transition in free-living cheilostome bryozoans, p. 21. In Abstracts, Seventh International Conference of the International Bryozoology Association. Bellingham, Washington.Google Scholar
Jones, D. S. 1997. The marine invertebrate fossil record of Florida, p. 89117. In Randazzo, A. F. and Jones, D. S. (eds.), The Geology of Florida. University Press of Florida, Gainesville.Google Scholar
Levinsen, G. M. R. 1909. Morphological and systematic studies on the cheilostomatous Bryozoa. Nationale Forfatteres Forlag, Copenhagen, 431 p.Google Scholar
Oyen, C. W., and Portell, R. W. 2001. Diversity patterns and biostratigraphy of Cenozoic echinoderms from Florida. Palaeogeography, Palaeoclimatology, Palaeoecology, 166:193218.Google Scholar
Randazzo, A. F. 1997. The sedimentary platform of Florida: Mesozoic to Cenozoic, p. 3956. In Randazzo, A. F. and Jones, D. S. (eds.), The Geology of Florida. University Press of Florida, Gainesville.Google Scholar
Schindler, K. S., and Portell, R. W. 1993. The occurrence of an Eocene hermit crab-bryozoan symbiosis with a review of hermit crab symbionts from the Florida fossil record. Geological Society of America Abstracts with Programs, 25(4):67.Google Scholar
Scolaro, R. J. 1970. Notes on Miocene Bryozoa from northwestern Florida. Tulane Studies in Geology and Paleontology, 8:9398.Google Scholar
Scott, T. M. 1997. Miocene to Holocene history of Florida, p. 5788. In Randazzo, A. F. and Jones, D. S. (eds.), The Geology of Florida. University Press of Florida, Gainesville.Google Scholar
Smith, A. G. 1966. Stag-horns and long-horns. Pacific Discovery, 19(5):3031.Google Scholar
Smith, A. M., and Nelson, C. S. 1993. Mineralogical, carbonate geochemical, and diagenetic data for modern New Zealand bryozoans. Occasional Report, Department of Earth Sciences, University of Waikato, 17:171.Google Scholar
Stanley, S. M., Ries, J. B., and Hardie, L. A. 2002. Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition. Proceedings of the National Academy of Sciences, 99:1532315326.Google Scholar
Taylor, P. D. 1994. Evolutionary palaeoecology of symbioses between bryozoans and hermit crabs. Historical Biology, 9:157205.Google Scholar
Taylor, P. D., and Cook, P. L. 1981. Hippoporidra edax (Busk, 1859) and a revision of some fossil and living Hippoporidra (Bryozoa). Bulletin of the British Museum (Natural History) Geology Series, 35:243251.Google Scholar
Taylor, P. D., and Monks, N. 1997. A new cheilostome bryozoan genus pseudoplanktonic on molluscs and algae. Invertebrate Biology, 116:3951.Google Scholar
Vigneaux, M. 1949. Révision des Bryozoaires néogènes du Bassin d'Aquitaine et essai de classification. Mémoires de la Société geologique de France, n.s., 28:1153.Google Scholar
Walker, S. E. 1992. Criteria for recognizing marine hermit crabs in the fossil record using gastropod shells. Journal of Paleontology, 66:535558.Google Scholar