Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T18:19:20.504Z Has data issue: false hasContentIssue false

New archaeocyathan occurrences in the upper Harkless Formation (Lower Cambrian of western Nevada)

Published online by Cambridge University Press:  19 May 2016

Michael Savarese
Affiliation:
Department of Geology, University of California, Davis 95616
Philip W. Signor
Affiliation:
White Mountain Research Station, University of California, Los Angeles 90024

Abstract

A newly discovered assemblage of archaeocyathans, dominated by the unusual genus Retilamina, occurs in outcrops of the upper Harkless Formation in Esmeralda County, Nevada. These rock units have been correlated with the Saline Valley Formation in the Bonnia–Olenellus Zone (late Early Cambrian) of eastern California, making this the youngest known occurrence of archaeocyathans in the White–Inyo region.

Although the assemblage contains a variety of different organisms (including the alga Renalcis, trilobite and echinoderm debris, bivalves?, and Chancelloria spines), it is dominated by archaeocyathans. Diplocyathellus, a conical form with a complex inner wall, is the only genus of regular archaeocyathan in the assemblage. The irregular archaeocyathans Arrythmocricus and Metaldetes exhibit dendroid branching and cylindroconical morphologies, respectively. A third irregular, Retilamina debrennei n. sp., is an atypical archaeocyathan with a sheetlike or shallow convex dome morphology. Retilamina formed natural cavities that sheltered cryptobionts. Unlike coelobiont communities reported from other Lower Cambrian cavities where the diversity of the supported biota is relatively high, the Harkless cavities contain only the alga Renalcis. While the undersurfaces of Retilamina are consistently encrusted by Renalcis, the upper, exposed surfaces typically lack epibionts. Similar morphologies and associations for Retilamina have been reported from bioherms and biostromes from southern Labrador and western Newfoundland. Unlike most archaeocyathans, Retilamina had a solitary, free-lying life habit. Retilamina's broad base and low profile provided stability in episodically turbulent conditions or on biologically disturbed substrates.

This occurrence demonstrates that the disappearance of archaeocyathans from the stratigraphic record of the southern Great Basin in the late Early Cambrian is a paleoecological artifact. Archaeocyathans were extant in the region in the late Early Cambrian but the habitats conducive to archaeocyathan growth or preservation are, for the most part, not represented in the preserved strata.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, J. D. 1978. Revised models for depositional grand cycles, Cambrian of the southern Rocky Mountains, Canada. Bulletin of Canadian Petroleum Geology, 26:515542.Google Scholar
Albers, J. P., and Stewart, J. H. 1972. Geology and mineral deposits of Esmeralda County, Nevada. Nevada Bureau of Mines and Geology Bulletin 78, 78 p.Google Scholar
Balsam, W. L., and Vogel, S. 1973. Water movement in archaeocyathids: evidence and implications of passive flow in models. Journal of Paleontology, 47:979984.Google Scholar
Bassler, R. S. 1953. Bryozoa. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. G. Geological Society of America and University of Kansas Press, Lawrence, Kansas, 253 p.Google Scholar
Beadle, S. C. 1988. Dasyclads, cyclocrinitids and receptaculitids: comparative morphology and paleoecology. Lethaia, 21:112.CrossRefGoogle Scholar
Bergquist, P. R. 1978. Sponges. University of California Press, Berkeley and Los Angeles, 268 p.Google Scholar
Brasier, M. D. 1977. An early Cambrian chert biota and its implications. Nature, 268:719720.Google Scholar
Brasier, M. D. 1982. Sea level changes, facies changes and the late Precambrian-Early Cambrian evolutionary explosion. Precambrian Research, 17:105123.Google Scholar
Crews, A. L. 1980. Sedimentology of a Lower Cambrian marine shelf sequence: Zabriskie Quartzite, Saline Valley Formation, and related strata. Unpubl. , University of California, Los Angeles, 152 p.Google Scholar
Debrenne, F. 1975. Formations organogenes du Cambrien inférieur du Maroc, p. 1924. In Sokolov, B. S. (ed.), Drevniye Cnidaria, Trudy Instituta Geologii i Geofiziki (Novosibirsk), 202.Google Scholar
Debrenne, F., and James, N. P. 1981. Reef-associated archaeocyathans from the Lower Cambrian of Labrador and Newfoundland. Palaeontology, 24:343378.Google Scholar
Debrenne, F., Rozanov, A. Yu., and Webers, G. F. 1984. Upper Cambrian Archaeocyatha from Antarctica. Geological Magazine, 121:291299.CrossRefGoogle Scholar
Debrenne, F., Rozanov, A. Yu., and Vacelet, J. 1984. Archaeocyatha: is the sponge model consistent with their structural organization? Palaeontographica Americana, 54:358369.Google Scholar
Dunham, R. J. 1970. Stratigraphic reefs versus ecologic reefs. American Association of Petroleum Geologists Bulletin, 54:19311932.Google Scholar
Embry, A. F., and Klovan, J. E. 1971. A Late Devonian reef tract on northeastern Banks Island, North West Territory. Bulletin of Canadian Petroleum Geology, 19:730781.Google Scholar
Fisher, D. C., and Nitecki, M. H. 1982. Problems in the analysis of receptaculitid affinities. Third North American Paleontological Convention, 1:181186.Google Scholar
Fritz, M. A. 1947. Cambrian Bryozoa. Journal of Paleontology, 21:434435.Google Scholar
Gandin, A., and Debrenne, F. 1984. Lower Cambrian bioconstructions in southwestern Sardinia (Italy). Geobios, Mémoire spécial no. 8, p. 231240.Google Scholar
Gangloff, R. A. 1975. The Archaeocyatha of the central and southwestern Great Basin, California and Nevada. Unpubl. , University of California, Berkeley, 302 p.Google Scholar
Gangloff, R. A. 1976. Archaeocyatha of eastern California and western Nevada, p. 1930. In Moore, J. N. and Fritsche, A. E. (eds.), Pacific Coast Paleogeography Field Guide 1. Pacific Coast Section, Society of Economic Paleontologists and Mineralogists.Google Scholar
Gil Cid, M. D., Perejon, A., and de San Jose, M. A. 1976. Estratigrafia y paleontologia de las Calizas Cambricas de Los Navalucillos (Toledo). Tecniterrae, 13:119.Google Scholar
Gravestock, D. I. 1984. Archaeocyatha from lower parts of the Lower Cambrian carbonate sequence in South Australia. Association of Australasian Palaeontologists, Memoir 2, 139 p.Google Scholar
Heckel, P. H. 1974. Carbonate buildups in the geologic record: a review, p. 90155. In Laporte, L. F. (ed.), Reefs in Time and Space. Society of Economic Paleontologists and Mineralogists Special Publication, 18.Google Scholar
Hill, D. 1965. Archaeocyatha from Antarctica and a review of the phylum. Trans-Antarctic Expedition (1955–1958), Scientific Reports no. 10, Geology, 3, London, 151 p.Google Scholar
Hill, D., 1972. Archaeocyatha. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Pt. E. Geological Society of America and University of Kansas Press, Lawrence, 128 p.Google Scholar
Hubbard, J. A. E. B. 1970. Sedimentological factors affecting the distribution and growth of Visean caninioid corals in northwest Ireland. Palaeontology, 13:191209.Google Scholar
James, N. P., and Debrenne, F. 1980. Lower Cambrian bioherms: pioneer reefs of the Phanerozoic. Acta Palaeontologica Polonica, 25:655668.Google Scholar
James, N. P., and Gravestock, D. I. 1986. Lower Cambrian carbonate and shelf margin buildups, South Australia, p. 154. In Proceedings from 12th International Sedimentological Congress, Aug. 24–30, 1986, Canberra, Australia.Google Scholar
James, N. P., and Kobluk, D. R. 1978. Lower Cambrian patch reefs and associated sediments: southern Labrador, Canada. Sedimentology, 25:135.Google Scholar
Johnson, J. H. 1966. A review of the Cambrian algae. Quarterly of the Colorado School of Mines, 61:1162.Google Scholar
Kobluk, D. R. 1981a. The record of cavity-dwelling (coelobiontic) organisms in the Paleozoic. Canadian Journal of Earth Science, 18:181190.Google Scholar
Kobluk, D. R. 1981b. Earliest cavity-dwelling organisms (coelobionts), Lower Cambrian Poleta Formation, Nevada. Canadian Journal of Earth Science, 18:669679.Google Scholar
Kobluk, D. R., and James, N. P. 1979. Cavity dwelling organisms in Lower Cambrian patch reefs from southern Labrador. Lethaia, 12:193218.CrossRefGoogle Scholar
Kruse, P. D. 1987. Further Australian Cambrian sphinctozoans. Geological Magazine, 124:543553.Google Scholar
Loeblich, A. R. Jr., and Tappan, H. 1964. Protista 2. Sarcodina, chiefly “Thecamoebians” and Foraminifera. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. C:2:1. Geological Society of America and University of Kansas Press, Lawrence, 510 p.Google Scholar
McKee, E. H. 1968. Geology of the Magruder Mountain area Nevada-California. U.S. Geological Survey Bulletin, 1251:H1H40.Google Scholar
McKee, E. H., and Gangloff, R. A. 1969. Stratigraphic distribution of archaeocyathids in the Silver Peak Range and White and Inyo Mountains, western Nevada and eastern California. Journal of Paleontology, 43:716726.Google Scholar
Morgan, N. 1976. The Montenegro bioherms: their paleoecology, relation to other archeocyathid bioherms and to Early Cambrian sedimentation in the White and Inyo Mountains, California, p. 1317. In Moore, J. N. and Fritsche, A. E. (eds.), Pacific Coast Paleogeography Field Guide 1. Pacific Coast Section, Society of Economic Paleontologists and Mineralogists.Google Scholar
Mount, J. F., and Rowland, S. M. 1981. Grand cycle A (Lower Cambrian) of the southern Great Basin: a product of differential rates of relative sea level rise, p. 143146. In Taylor, M. E. (ed.), Short Papers on the Second International Symposium on the Cambrian System. U.S. Geological Survey Open-File Report 81–743.Google Scholar
Mount, J. F., and Signor, P. W. 1985. Early Cambrian innovation in shallow subtidal environments: paleoenvironments of Early Cambrian shelly fossils. Geology, 13:730733.Google Scholar
Nitecki, M. H., and Debrenne, F. 1979. The nature of radiocyathids and their relationship to receptaculitids and archaeocyathans. Geobios, 12:527.Google Scholar
Nitecki, M. H., Zhuravleva, I. T., Myagova, Y. I., and Tumi, D. F. 1981. Similarity of Soanites bimuralis to Archaeocyatha and receptaculitids. Paleontological Journal, 1:59.Google Scholar
Okulitch, V. J. 1935. Cyathospongia—a new class of Porifera to include the Archaeocyathinae. Transactions of the Royal Society of Canada, Ser. 3, section 4, 29:75106.Google Scholar
Okulitch, V. J. 1954. Archaeocyatha from the Lower Cambrian of Inyo County, California. Journal of Paleontology, 28:293296.Google Scholar
Okulitch, V. J., and de Laubenfels, M. W. 1953. The systematic position of Archaeocyatha (pleosponges). Journal of Paleontology, 27:481485.Google Scholar
Onken, B. R., and Signor, P. W. 1988. Lower Cambrian stratigraphic paleontology of the southwestern Great Basin (White-Inyo Mountains of eastern California and Esmeralda County, Nevada). Bulletin of the Southern California Paleontological Society, 20:131150.Google Scholar
Pickett, J., and Jell, P. A. 1983. Middle Cambrian Sphinctozoa (Porifera) from New South Wales. Memoir of the Association of Australasian Palaeontologists, 1:8592.Google Scholar
Read, B. C. 1980. Lower Cambrian archeocyathid buildups, Pelly Mountains Yukon. Geological Survey of Canada Paper, 78-18:154.Google Scholar
Rees, M. N., Rowell, A. J., and Pratt, B. R. 1986. Lower Cambrian reefs and associated deposits, central Transantarctic Mountains, p. 255256. In Proceedings from 12th International Sedimentological Congress, Aug. 24–30, 1986, Canberra, Australia.Google Scholar
Riding, R., and Brasier, M. 1975. Earliest calcareous foraminifera. Nature, 257:208210.CrossRefGoogle Scholar
Rowland, S. M. 1981a. Archaeocyathid reefs of the southern Great Basin, western United States, p. 193197. In Taylor, M. E. (ed.), Short Papers for the Second International Symposium on the Cambrian System. U.S. Geological Survey Open-File Report 81–743.Google Scholar
Rowland, S. M. 1981b. Archaeocyathid bioherms in the Lower Poleta Formation, Esmeralda County, Nevada, p. 4449. In Taylor, M. E. and Palmer, A. R. (eds.), Second International Symposium on the Cambrian System, Guidebook for Field Trip 1.Google Scholar
Rowland, S. M. 1984. Were there framework reefs in the Cambrian? Geology, 12:181183.Google Scholar
Rowland, S. M., and Gangloff, R. A. 1988. Structure and paleoecology of Lower Cambrian reefs. Palaios, 3:111135.Google Scholar
Rozanov, A. Yu., and Debrenne, F. 1974. Age of archaeocyathid assemblages. American Journal of Science, 274:833848.Google Scholar
Savarese, M. 1988. Functional analysis of archaeocyathan skeletal morphology: implications for the group's paleobiology. Geological Society of America, Abstracts with Programs, 20(7):A201.Google Scholar
Savarese, M., and Rowland, S. M. 1988. A reappraisal of archaeocyathan paleobiology. Geological Society of America, Abstracts with Programs, 20(3):227.Google Scholar
Stewart, J. H. 1970. Upper Precambrian and Lower Cambrian strata in the southern Great Basin, California and Nevada. U.S. Geological Survey Professional Paper 620, 206 p.Google Scholar
Stewart, J. H., and Poole, F. G. 1974. Lower Paleozoic and uppermost Precambrian Cordilleran miogeosyncline, Great Basin, western United States: tectonics and sedimentation. Society of Economic Paleontologists and Mineralogists Special Publication, 22:2857.Google Scholar
Taylor, T. G. 1910. The Archaeocyathinae from the Cambrian of South Australia with an account of the morphology and affinities of the whole class. Royal Society of South Australia, Memoirs, 2:55188.Google Scholar
Thayer, C. W. 1975. Morphologic adaptations of benthic invertebrates to soft substrata. Journal of Marine Research, 33:177189.Google Scholar
Vacelet, J. 1983. Les Eponges hypercalcifiées, reliques des organismes constructeurs de récifs du Paleozoique et du Mesozoique. Bulletin de la Société Zoologique de France, 108:547557.Google Scholar
Vologdin, A. G. 1937. Arkheotsiaty i rezul'taty ikh izucheniya v SSSR. Problemy Paleontologii, Paleontologicheskaya Laboratoriya, Moskovskogo Gosudarstvennogo Universiteta, Moskva, 2–3:453500.Google Scholar
Walcott, C. D. 1908. Cambrian sections of the Cordilleran area. Smithsonian Miscellaneous Publications, 53:167230.Google Scholar
Walter, M. R. 1967. Archaeocyatha and the biostratigraphy of the Lower Cambrian Hawker Group, South Australia. Journal Geological Society of Australia, 14:139152.Google Scholar
Zamarreno, I., and Debrenne, F. 1977. Sedimentologie et biologie des constructions organogenes du Cambrien inférieur du Sud de l'Espagne. Mémoires du Bureau de Recherche Géologiques et Minieres, France, 89:4961.Google Scholar
Zhuravleva, I. T. 1966. Rannenkembriyskie organogennye postroyki na territorii Sibirskoy platformy, p. 6184. In Organizm i sreda v geologich eskom proshlom, Nauka Moskva.Google Scholar
Zhuravleva, I. T. 1970. Porifera, Sphinctozoa, Archaeocyathi—their connections. Zoological Society of London Symposia, 25:4159.Google Scholar