Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T17:49:43.983Z Has data issue: false hasContentIssue false

A new approach to ancient microorganisms: taxonomy, paleoecology, and biostratigraphy of the Lower Cambrian Berkuta and Chulaktau microbiotas of South Kazakhstan

Published online by Cambridge University Press:  28 March 2016

J. William Schopf
Affiliation:
Department of Earth, Planetary, and Space Sciences, Center for the Study of Evolution and the Origin of Life, and Molecular Biology Institute, University of California, Los Angeles 90095 USA; PennState Astrobiology Research Center, Deike Building, University Park, PA 16802 USA; and University of Wisconsin Astrobiology Research Consortium, Madison, WI 53706, USA; 〈[email protected]
Vladimir N. Sergeev
Affiliation:
Geological Institute, Russian Academy of Sciences, Pyzhevskii per., 7, Moscow, 119017, Russia, 〈[email protected]
Anatoliy B. Kudryavtsev
Affiliation:
Center for the Study of Evolution and the Origin of Life, University of California, Los Angeles 90095 USA; PennState Astrobiology Research Center, Deike Building, University Park, PA 16802 USA; and University of Wisconsin Astrobiology Research Consortium, Madison, WI 53706, USA; 〈[email protected]

Abstract

Peritidal cherts and silicified phosphorites of the Early Cambrian Kyrshabakta (Berkuta Member) and Chulaktau formations of South Kazakhstan contain diverse assemblages of cellularly permineralized microorganisms that like other microbiotas of similar age and setting are dominated by cyanobacteria, both filamentous (oscillatoriacean trichomes and empty sheaths) and coccoidal (chroococcaceans). Although these near-shore assemblages contain sphaeromorph acritarchs, they differ from Neoproterozoic and Early Cambrian microbiotas of more open-marine environments by lacking morphologically complex planktonic eukaryotes such as the acanthomorphic acritarchs that are abundant in the Chulaktau-overlying Shabakta Formation. In general composition, the Berkuta and Chulaktau assemblages are similar both to microfossil assemblages of the pre-trilobite Rovno and Lontova Regional Stages of the East European Platform and to Early Cambrian microbiotas known from chert-phosphorite deposits worldwide.

The studies reported here are based on use of optical microscopy combined with techniques recently introduced to paleobiology: confocal laser scanning microscopy, and Raman and fluorescence spectroscopy and imagery. Taken together, these provide information in situ, in three dimensions and at high spatial resolution, about the organismal morphology; cellular anatomy; chemical composition; and mode, fidelity, and environment of preservation of the permineralized microfossils. Data are presented suggesting that the substitution of samarium for calcium in fossil-preserving apatite may provide evidence of its oxic or anoxic paleoenvironment of formation.

We interpret the Berkuta and Chulaktau assemblages to be composed of 27 taxa assigned to 17 genera of microscopic prokaryotes and eukaryotes that include one new genus and species, Berkutaphycus elongatus.

Type
Articles
Copyright
Copyright © 2016, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ankinovich, S.G., 1961, Lower Paleozoic of Northern Tian-Shan and Western Margin of Central Kazakhstan Vanadium Bearing Basin, Part I: Alma-Ata, AN Kazakhskoi SSR, 272 p. [in Russian]Google Scholar
Baturin, G.L., 1978, Phosphorites on the bottom of oceans: Moscow, Nauka, 231 p. [in Russian]Google Scholar
Bezrukov, P.L., 1941, The results of Karatau phosphorite basin research, in Developments in Kazakhstan Geological Research for 20 Years: Alma-Ata. AN Kazakhskoi SSR, p. 137149. [in Russian]Google Scholar
Burzin, M.B., 1995, Late Vendian helicoid filamentous microfossils: Paleontological Journal, v. 29(1A), p. 134.Google Scholar
Butterfield, N.J., Knoll, A.H., and Swett, K., 1994, Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen: Fossils and Strata, v. 34, 84 p.Google Scholar
Cao, F., 1985, The new data of algal microfossils from the Sinian Doushantuo Formation: Bulletin, Tianjin Institute of Geology and Mineral Resources, v. 12, p. 183193. [in Chinese]Google Scholar
Chen, J.-Y., Schopf, J.W., Bottjer, D.J., Zhang, C.-Y., Kudryavtsev, A.B., Wang, X.-Q., Yang, Y.H., and Gao, X., 2007, Raman spectra of a Lower Cambrian ctenophore embryo from SW Shaanxi, China: Proceedings of the National Academy of Sciences USA, v. 104, p. 62896292.Google Scholar
Chumakov, N.M., 2009, The Baykonurian glaciohorizon of the Late Vendian: Stratigraphy and Geological Correlation, v. 17, p. 373381.CrossRefGoogle Scholar
Chumakov, N.M., 2010, Precambrian glaciations and associated biospheric events: Stratigraphy and Geological Correlation, v. 18, p. 467479.Google Scholar
Chumakov, N.M., 2011, Late Proterozoic African Glacial Era: Stratigraphy and Geological Correlation, v. 19, p. 120.CrossRefGoogle Scholar
Claxton, N.S., Fellers, T.J., and Davidson, M.W., 2005, Laser scanning confocal microscopy: http://www.olympusfluoview.com/theory/LSCMIntro.pdf (accessed January 2016).Google Scholar
Cloud, P., Awramik, S.M., Morrison, K., and Hadley, D.G., 1979, Earliest Phanerozoic or latest Proterozoic fossils from Arabian shield: Precambrian Research, v. 10, p. 7393.Google Scholar
Cohen, P.A., Schopf, J.W., Butterfield, N.J., Kudryavtsev, A.B., and Macdonald, F.A., 2011, Phosphate biomineralization in mid-Neoproterozoic protists: Geology, v. 39, p. 539542.Google Scholar
Cook, P.J., and Shergold, J.H., eds., 2005, Phosphate deposits of the World, volume 1: Proterozoic and Cambrian phosphorites: Cambridge-London-New York-New Rochelle-Melbourne-Sydney, Cambridge University Press, 408 p.Google Scholar
Decision of fifth all-union colloquium on precambrian microfossils of the USSR, 1986, Leningrad, Academy of Sciences of the USSR, 18 p. [in Russian]Google Scholar
Deflandre, G., 1954, Systematique des hystrichosphaeridiès: sur I’acception de genre Cymatiosphaera O. Wetzel. Comptes Rendu: Geological Society of France, v. 12, p. 257259.Google Scholar
Dong, L., Xiao, S., Shen, B., Zhou, C., Li, G., and Yao, J., 2009, Basal Cambrian microfossils from the Yangtze Gorges area (South China) and the Aksu area (Tarim Block, Northwestern China): Journal of Paleontology, v. 83, p. 3044.Google Scholar
Downie, C., and Sarjeant, W.A.S., 1963, On the interpretation and status of some Hystrichosphaera genera: Palaeontology, v. 6, p. 8396.Google Scholar
Eganov, E.A., 1988, Origin of phosphorites and stromatolites: Novosibirsk, Institute of Geology and Geophysics of the Siberian Branch of AN SSSR, 90 p.Google Scholar
Eganov, E.A., and Sovietov, Yu.K., 1979, Karatau – A Model for Phosphorite Deposition: Novosibirsk, Nauka, 192 p. [in Russian]Google Scholar
Eganov, E.A., Sovietov, Yu.K., and Yanshin, A.L., 1986, Proterozoic and Cambrian phosphorites deposits: Karatau, southern Kazakhstan, USSR, in Cook, P.J., and Shergold, J.H., eds., Phosphate Deposits of the World: volume 1 Proterozoic and Cambrian Phosphorites: Cambridge, UK, Cambridge University Press, p. 175189.Google Scholar
Eisenack, A., 1958, Microfossilien aus dem Ordovizium des Baltikums, 1, Markasitschicht, Dictyonema-Scheifer, Glaukonitsand, Glaukonitkalk: Senckenbergian Lethaea, v. 39, p. 389404.Google Scholar
Elenkin, A.A., 1949, Monographie algarum Cyanophycearum aquidulcium et terrestrium infinibus URSS inventarum: Moscow, Izdatelstvo AN SSSR, Pars specialis (Systematica), Fascicie II, p. 9851908. [in Russian]Google Scholar
Ercegović, A., 1932, Studes écologique et sociologique des Cyanophycées lithophytes de la côte Yugoslave de l’Adriatique: Bulletin International de l’Académie Yougoslave de la Sciences des Arts, Classe Mathematic et Naturelles, v. 26, p. 3356.Google Scholar
Ergaliev, G. Kh., and Pokrovskaya, N.A., 1977, Lower Cambrian Trilobites of the Malay Karatau Range (South Kazakhstan): Alma-Ata, Nauka. [in Russian]Google Scholar
Fairchild, T.R., 1985, Size as criterion for distinguishing probable eukaryotic unicells in silicified Precambrian microfloras, in Campos, D.A., Ferreira, C.S., Brito, I.M., and Viana, C.F., eds., Coletânea de Trabalhos Paleontológicos, Brasil, Departamento Nacional de Produção Mineral, Série Geologia no. 27, Brasília, Seção Paleontologia e Estratigrafia no. 2, p. 315320.Google Scholar
Gaft, M., Reisfeld, R., Panczer, G., Boulon, G., Shoval, S., and Champagnon, B., 1997a, Accommodation of rare-earths and manganese by apatite: Optical Materials, v. 8, p. 149156.CrossRefGoogle Scholar
Gaft, M., Reisfeld, R., Panczer, G., Shoval, S., Champagnon, B., and Boulon, G., 1997b, Eu+3 luminescence in high-symmetry sites of natural apatite: Journal of Luminescence, v. 72–74, p. 572774.Google Scholar
Gaft, M., Reisfeld, R., and Panczer, G., 2005, Modern Luminescence Spectroscopy of Minerals and Materials: Berlin, Springer-Verlag, 356 p.Google Scholar
Geitler, L., 1932, Cyanophyceae, in Rabenhorst, L., ed., Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, Band 14: Leipzig, Akademische Verlagsgesellschaft, pp. 6731196.Google Scholar
Gerasimenko, L.M., and Krylov, I.N., 1983, Post-mortem alteration of cyanobacteria in the algal-bacterial mats from the Kamchatka Peninsula thermal springs: Doklady AN SSSR, v. 272(1), p. 201203. [in Russian]Google Scholar
Gerasimenko, L.M., Goncharova, I.V., Zhegallo, E.A., Zavarzin, G.A., Zaitseva, L.V., Orleanskii, V.K., Rozanov, A.Yu., and Ushatinskaya, G.T., 1996, The mineralization (phosphatization) of filamentous cyanobacteria: Lithology and Mineral Resources, v. 2, p. 185191.Google Scholar
Gerasimenko, L.M., Zavarzin, G.A., Rozanov, A.Yu., and Ushatinskaya, G.T., 1999, The role of cyanobacteria in the formation of phosphorite deposits: Journal of General Biology, v. 64, p. 415430.Google Scholar
Golovenok, V. K., and Belova, M.Yu., 1983, Obruchevella from the Riphean of the Patom Highland and the Vendian of southern Kazakhstan: Doklady AN SSSR, v. 272, p. 14621465. [in Russian]Google Scholar
Golovenok, V.K., and Belova, M.Yu., 1984, Riphean microbiotas in cherts of the Billyakh Group on the Anabar Uplift: Paleontologicheskii Zhurnal, v. 4, p. 2030. [English version]Google Scholar
Golovenok, V.K., and Belova, M.Yu., 1989, Microfossils of Obruchevella parva Reitlinger from Vendian deposits of Lena River basin: Doklady AN SSSR, v. 306, p. 190193. [in Russian]Google Scholar
Golovenok, V.K., and Belova, M.Yu., 1993, The microfossils in the cherts from the Riphean deposits of the Turukhansk Uplift: Stratigraphy and Geological Correlation, v. 1(3), p. 5161. [English version]Google Scholar
Golub, I.N., 1979, A new group of problematic microfossils from Vendian deposits of the Orshan depression (Russian Platform), in Sokolov, B.S., ed., Paleontology of Precambrian and Early Cambrian: Leningrad, Nauka, p. 147155. [in Russian]Google Scholar
Golubic, S., and Hofmann, H.J., 1976, Comparison of Holocene and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation: Journal of Paleontology, v. 50, p. 10741082.Google Scholar
Green, J., Knoll, A.H., and Swett, K., 1989, Microfossils from silicified stromatolitic carbonates of the Upper Proterozoic Limestones - Dolomite ‘Series,’ Central East Greenland: Tectonics, v. 119, p. 567585.Google Scholar
Grey, K., 2005, Ediacaran palynology of Australia: Association of Australasian Palaeontologists: Memoir, v. 31, 439 p.Google Scholar
Hermann, T.N., 1974, Finds of massive accumulations of trichomes in the Riphean, in Timofeev, B.V., ed., Microfossils of the Proterozoic and Early Paleozoic of the USSR: Leningrad, Nauka, p. 610. [in Russian]Google Scholar
Hermann, T.N., 1990, The Organic World a Billion Years Ago: Leningrad, Nauka, 50 p. [in Russian, with English summary]Google Scholar
Hofmann, H.J., 1976, Precambrian microflora, Belcher Island, Canada: significance and systematics: Journal of Paleontology, v. 50, p. 10401073.Google Scholar
Hofmann, H.J., and Schopf, J.W., 1983, Early Proterozoic microfossils, in Schopf, J.W., ed., Earth’s Earliest Biosphere: Its Origin and Evolution: Princeton, New Jersey, Princeton University Press, p. 321360.Google Scholar
Hofmann, H.J., and Jackson, C.D., 1994, Shale-facies microfossils from the Proterozoic Bylot Supergroup, Baffin Island, Canada: Palaeontological Society: Memoir, v. 37, p. 139.Google Scholar
Horodyski, R. J., and Donaldson, J.A., 1980, Microfossils from the Middle Proterozoic Dismal Lakes Group, Arctic Canada: Precambrian Research, v. 11, p. 125159.Google Scholar
Javaux, E.J., Knoll, A.H., and Walter, M.R., 2004, TEM evidence for eukaryotic diversity in mid-Proterozoic oceans: Geobiology, v. 2, p. 121132.Google Scholar
Jehlička, J., Urban, A., and Pokorny, J., 2003, Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks: Spectrochimica Acta, v. A59, p. 23412352.Google Scholar
Keller, B.M., Korolev, V.G., and Krylov, I.N., 1965, Subdivision of the Upper Proterozoic in Tian Shan: Izvestiya AN SSSR: Seria Geologicheskaya, v. 4, p. 101115. [in Russian]Google Scholar
Kholodov, V.N., and Paul, R.K., 1993a, Biota and problems of ancient phosphorite formation, in Ecosysteme Restructures and the Evolution of the Biosphere: Moscow, Nedra, p. 333339. [in Russian]Google Scholar
Kholodov, V.N., and Paul, R.K., 1993b, Problem of phosphorites origin: Lithology and Mineral Resources, v. 3, p. 110115. [in Russian]Google Scholar
Kholodov, V.N., and Paul, R.K., 1994, Morphogenetic peculiarities of the Karatau phosphorites (Kazakhstan) and the problem of the ancient biogenetic phosphorous formation, in Ecosystem Restructures and the Evolution of the Biosphere: Moscow, Nedra, p. 339347. [in Russian]Google Scholar
Kirchner, O., 1900, Shizophyceae, in Engler, A., and Prantl, K., eds., Die Natürlichen Pflanzenfamilien: Leipzig, I Teil, Abteilung Ia, p. 115121.Google Scholar
Knoll, A.H., 1981, Paleoecology of Late Precambrian microbial assemblages, in Niklas, K., ed., Paleobotany, Paleoecology and Evolution: New York, Praeger, p. 1754.Google Scholar
Knoll, A.H., 1982, Microfossils from the Late Precambrian Draken Conglomerate, Ny Friesland, Svalbard: Journal of Paleontology, v. 56, p. 577790.Google Scholar
Knoll, A.H., 1994, Proterozoic and Early Cambrian protists: evidence for accelerating evolutionary tempo: Proceedings of the National Academy of Sciences, USA, v. 91, p. 67436750.Google Scholar
Knoll, A.H., 1996, Archean and Proterozoic Paleontology, in Jansonius, J., and McGregor, D.C., eds., Palynology: Principles and Applications: American Association of Stratigraphic Palynologists Foundation, v. 1, p. 51–80.Google Scholar
Knoll, A.H., and Golubic, S., 1979, Anatomy and taphonomy of a Precambrian algal stromatolite: Precambrian Research, v. 10, p. 115151.Google Scholar
Knoll, A.H., Strother, P.K., and Rossi, S., 1988, Distribution and diagenesis of microfossils from the Lower Proterozoic Duck Creek Dolomite, Western Australia: Precambrian Research, v. 38, p. 257279.Google Scholar
Knoll, A.H., Swett, K., and Mark, J., 1991, Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen: Journal of Paleontology, v. 65, p. 531570.Google Scholar
Knoll, A.H., Javaux, E.J., Hewitt, D., and Cohen, P., 2006, Eukaryotic organisms in Proterozoic oceans: Philosophical Transactions of the Royal Society of London B, v. 361, p. 10231038.Google Scholar
Kolosov, P.N., 1977, Ancient Oil and Gas-bearing Deposits from the Southeast Siberian Platform: Novosibirsk, Nauka, 90 p.Google Scholar
Kolosov, P.N., 1984, Late Precambrian microorganisms from the eastern Siberian Platform: Yakutsk, Yakutian Filial of Siberian Branch of Academy of Sciences of the USSR, 84 p. [in Russian]Google Scholar
Korolev, V.G., 1961, Schema of Tian-Shan and adjacent areas tectonic zones: Izvestiya Kyzgyzskogo Filiala VGO, v. 3, p. 81102. [in Russian]Google Scholar
Korolev, V.G., 1971, Upper Precambrian stratigraphy of Tian-Shan Mountains and Karatau, in Precambrian Stratigraphy of Kazakhstan and Tian-Shan: Moscow, MGU, p. 117118. [in Russian]Google Scholar
Korolev, V.G., and Ogurtsova, R.N., 1981, Acritarchs of the upper part of Lower Cambrian deposits from the Talas-Karatau zone (Maly Karatau Range): Doklady AN SSSR, v. 261(1), p. 162164. [in Russian]Google Scholar
Korolev, V.G., and Ogurtsova, R.N., 1982, Correlation of the Vendian-Lower Cambrian boundary deposits of the Talas-Karatau zone (Maly Karatau Range) with the reference sections of the East European and Siberian Platforms: Izvestiya AN SSSR, Seria Geologicheskaya v. 6, p. 2736. [in Russian]Google Scholar
Krylov, I.N., 1967, Riphean and Lower Cambrian Stromatolites of Tian-Shan Mountains and Karatau: Moscow, Nauka, 76 p. [in Russian]Google Scholar
Levashova, N.M., Meert, J.G., Gibsher, A.S., Grice, W.C., and Bazhenov, M.L., 2011, The origin of microcontinents in the Central Asian Orogenic Belt: constraints from paleomagnetism and geochronology: Precambrian Research, v. 185, p. 3754.Google Scholar
Luo, H., Jian, Z., Wu, X., Song, X., and Ouyang, L., 1982, The Sinian-Cambrian Boundary in Eastern Yunnan, China: People’s Publishing House of Yunnan, Kunming, 265 p. [in Chinese]Google Scholar
Luo, H., Jian, Z., Wu, X., Song, X., Ouyang, L., Xing, Y., Liu, G., Zhang, S., and Tao, Y., 1984, Sinian-Cambrian Boundary Stratotype Section at Meishucun, Jinning, Yunnan, China: People’s Publishing House of Yunnan, Kunming, 154 p. [in Chinese]Google Scholar
Maithy, P. K., 1975, Microorganisms from the Bushimay System (Late Precambrian) of Kanshi, Zaire: Palaeobotanist, v. 22, p. 133149.Google Scholar
Mambetov, A.M., 1993, The earliest skeletonized fossils and zonal stratigraphy of the upper Precambrian–Lower Cambrian of North Tian Shan, in Mambetov, M., ed., Novyye Dannyye po Biostratigrafii Dokembriya i Paleozoya Kyrgyzstana: Ilim, Bishkek, p. 1523. [in Russian]Google Scholar
Mendelson, C.V., and Schopf, J.W., 1982, Proterozoic microfossils from the Sukhaya Tunguska, Shorikha and Yudoma Formations of the Siberian Platform: U.S.S.R. Journal of Paleontology, v. 56, p. 4283.Google Scholar
McMillan, P.F., and Hofmeister, A.M., 1988, Infrared and Raman spectroscopy: Review of Mineralogy, v. 18, p. 99159.Google Scholar
Meert, J.G., Gibsher, A.S., Levashova, N.M., Grice, W.C., Kamenov, G.D., and Ryabinin, A.B., 2011, Glaciation and ~770 Ma Ediacara [?] fossils from the Lesser Karatau Microcontinent, Kazakhstan: Gondwana Research, v. 19, p. 867880.Google Scholar
Missarzhevskii, V.V., 1989, The oldest shelly fossils and the stratigraphy of the Precambrian-Cambrian boundary deposits: Moscow, Nauka, 237 p. [in Russian]Google Scholar
Missarzhevskii, V.V., and Mambetov, A.M., 1981, Stratigraphy and Fauna of the Maly Karatau Precambrian-Cambrian Boundary Deposits: Moscow, Nauka, 92 p. [in Russian]Google Scholar
Moczydłowska, M., 2010, Life cycle of Early Cambrian microalgae from the Skiagia-plexus acritarchs: Journal of Paleontology, v. 84, p. 216230.Google Scholar
Moczydłowska, M., Schopf, J.W., and William, S., 2010, Micro- and nano-scale ultrastructure of cell walls in Cryogenian microfossils: revealing their biological affinity: Lethaia, v. 43, p. 129136.Google Scholar
Nägeli, C., 1849, Gattungen einzelliger Algen, physiologisch und under systematisch bearbeitet, Neue Denkschriften der Allgemeinen schweizerischen Gesellschaft für die gesamten: Naturwissenschaften, v. 8, p. 4460.Google Scholar
Nagovitsin, K.E., 2000, Silicified microbiotas of the Upper Riphean of the Yenisei Ridge: news in paleontology and stratigraphy: Geologia i Geofizika, v. 41(2/3), p. 731. [English version]Google Scholar
Naumova, S.N., 1949, Spores of the Lower Cambrian: Izvestiya Akademiya Nauk SSSR: Seriya Geologicheskaya, v. 4, p. 4956. [in Russian]Google Scholar
Nyberg, A.V., and Schopf, J.W., 1984, Microfossils in stromatolitic cherts from the Upper Proterozoic Min’yar Formation, southern Ural Mountains, USSR: Journal of Paleontology, v. 58, p. 738772.Google Scholar
Oehler, D.Z., 1978, Microflora of the Middle Proterozoic Balbirini Dolomite [McArthur Group] of Australia: Alcheringa, v. 2, p. 269309.Google Scholar
Ogurtsova, R.N., 1985, Plant Microfossils of the Vendian-Lower Cambrian Maly Karatau Reference Section: Ilim, Frunze, 136 p. [in Russian]Google Scholar
Ogurtsova, R.N., and Sergeev, V.N., 1987, The microbiota of the Upper Precambrian Chichkanskaya Formation in the Lesser Karatau Region (southern Kazakhstan): Paleontologicheskii Zhurnal, v. 2, p. 101112. [English version]Google Scholar
Ogurtsova, R.N., and Sergeev, V.N., 1989, Megasphaeromorphids from the Upper Precambrian Chichkan Formation, southern Kazakhstan: Paleontologicheskii Zhurnal, v. 2, p. 119122. [in Russian]Google Scholar
Pasteris, J.D., and Wopenka, B., 1991, Raman spectra of graphite as indicators of degree of metamorphism: Canadian Mineralogist, v. 29, p. 19.Google Scholar
Popov, L.E., Bassett, M.G., Zhemchuzhnikov, V.G., Holmer, L.E., and Klishevich, I.A., 2009, Gondwanan faunal signatures from early Paleozoic terranes of Kazakhstan and Central Asia: evidence and tectonic implications, in Bassett, M.G., ed., Early Paleozoic Peri-Gondwana Terranes: New Insights from Tectonics and Biogeography: Geological Society of London, Special Publications, v. 325, p. 2364.Google Scholar
Prasad, B., 2007, Obruchevella and other terminal Proterozoic (Vendian) organic-walled microfossils from the Bhander Group (Vendian Supergroup), Madhya Pradesh: Journal of the Geological Society of India, v. 69, p. 295310.Google Scholar
Prasad, B., Uniyal, S.N., and Asher, R., 2005, Organic walled microfossils from the Proterozoic Vindhyan Supergroup of Son Valley, Madhya Pradesh, India: Palaeobotanist, v. 54, p. 1360.Google Scholar
Reisfeld, R., Gaft, M., Boulon, G., Panczer, C., and Jorgensen, C.K., 1996, Laser-induced luminescence of rare-earth elements in natural fluor-apatites: Journal of Luminescence, v. 69, p. 343353.Google Scholar
Reitlinger, E.A., 1948, Cambrian foraminifera of Yakutia: Bulletin of Moscow Nature Investigators Society: Geological Section, v. 23, p. 7781. [in Russian]Google Scholar
Reitlinger, E.A., 1959, Atlas of Microscopic Organic Remains and Problematica of Ancient Deposits of Siberia: Moscow, Academiya Nauk SSSR, 62 p. [in Russian]Google Scholar
Schopf, J.W., 1968, Microflora of the Bitter Springs Formation, Late Precambrian, central Australia: Journal of Paleontology, v. 42, p. 651688.Google Scholar
Schopf, J.W., 1976, Are the oldest “fossils,” fossils?: Origins of Life, v. 7, p. 1931.Google Scholar
Schopf, J.W., 1992a, Informal revised classification of Proterozoic microfossils, in Schopf, J.W., and Klein, C., eds., The Proterozoic Biosphere: A Multidisciplinary Study: New York, Cambridge University Press, p. 11191166.Google Scholar
Schopf, J.W., 1992b, Evolution of the Proterozoic biosphere: benchmarks, tempo, and mode, in Schopf, J.W., and Klein, C., eds., The Proterozoic Biosphere: A Multidisciplinary Study: New York, Cambridge University Press, p. 584600.Google Scholar
Schopf, J.W., 1992c, Atlas of representative Proterozoic microfossils, in Schopf, J.W., and Klein, C., eds., The Proterozoic Biosphere: A Multidisciplinary Study: New York, Cambridge University Press, p. 10551118.Google Scholar
Schopf, J.W., 1994, Disparate rates, differing fates: the rules of evolution changed from the Precambrian to the Phanerozoic: Proceedings of the National Academy of Sciences, USA, v. 91, p. 67356742.Google Scholar
Schopf, J.W., and Kudryavtsev, A.B., 2005, Three-dimensional imagery of Precambrian microscopic organisms: Geobiology, v. 3, p. 112.Google Scholar
Schopf, J.W., and Kudryavtsev, A.B., 2010, A renaissance in studies of ancient life: Geology Today, v. 26, p. 141146.Google Scholar
Schopf, J.W., and Kudryavtsev, A.B., 2012, Biogenicity of Earth’s earliest fossils: a resolution of the controversy: Gondwana Research, v. 39, p. 761771.Google Scholar
Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Wdowiak, T.J., and Czaja, A.D., 2002, Laser-Raman imagery of Earth’s earliest fossils: Nature, v. 416, p. 7376.Google Scholar
Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Czaja, A.D., and Wdowiak., T.J., 2005, Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils: Astrobiology, v. 5, p. 333371.Google Scholar
Schopf, J.W., Tripathi, A., and Kudryavtsev, A.B., 2006, Three-dimensional confocal optical microscopy of Precambrian microscopic organisms. Astrobiology, v. 6, p. 116.CrossRefGoogle ScholarPubMed
Schopf, J.W., Kudryavtsev, A.B., and Sergeev, V.N., 2010a, Confocal laser scanning microscopy and Raman imagery of the late Neoproterozoic Chichkan microbiota of South Kazakhstan: Journal of Paleontology, v. 84, p. 402416.Google Scholar
Schopf, J.W., Kudryavtsev, A.B., Tripathi, A.B., and Czaja, A.D., 2010b, Three-dimensional morphological (CLSM) and chemical (Raman) imagery of cellularly mineralized fossils, in Allison, P.A., and Bottjer, D.J., eds., Taphonomy: Process and Bias through Time: Amsterdam, the Netherlands, Springer-Verlag, p. 457486.Google Scholar
Schopf, J.W., Farmer, J.D., Foster, I.S., Kudryavtsev, A.B., Gallardo, V.A., and Espinoza, C., 2012, Gypsum-permineralized microfossils and their relevance to the search for life on Mars: Astrobiology, v. 12, p. 619633.Google Scholar
Sergeev, V.N., 1989, Microfossils from transitional Precambrian-Phanerozoic strata of Central Asia: Himalayan Geology, v. 13, p. 269278.Google Scholar
Sergeev, V.N., 1992, Silicified microfossils from the Precambrian and Cambrian deposits of the southern Ural Mountains and Middle Asia: Moscow, Nauka, 134 p. [in Russian]Google Scholar
Sergeev, V.N., 2001, Paleobiology of the Neoproterozoic (Upper Riphean) Shorikha and Burovaya silicified microbiotas, Turukhansk Uplift, Siberia: Journal of Paleontology, v. 75, p. 427448.Google Scholar
Sergeev, V.N., 2002, Silicified microfossils from the Vendian Yudoma Group, the Uchur-Maya Region of Siberia: facies dependence and biostratigraphic potential: Stratigraphy and Geological Correlation, v. 10(6), p. 547564. [English version]Google Scholar
Sergeev, V.N., 2006, Precambrian Microfossils in Mherts: Their Paleobiology, Classification and Biostratigraphic Usefulness: Moscow, GEOS, 280 p. [in Russian]Google Scholar
Sergeev, V.N., and Seong-Joo, L., 2001, Microfossils from cherts of the Middle Riphean Svetlyi Formation, the Uchur-Maya Region of Siberia and their stratigraphic significance: Stratigraphy and Geological Correlation, v. 9(1), p. 110. [English version]Google Scholar
Sergeev, V.N., and Seong-Joo., L., 2004, New data on silicified microfossils from the Satka Formation of the Lower Riphean stratotype, the Urals: Stratigraphy and Geological Correlation, v. 12(1), p. 121. [English version]Google Scholar
Sergeev, V.N., and Ogurtsova, R.N., 1989, Microbiota from the Lower Cambrian phosphatic deposits of the Maly Karatau (South Kazakhstan): Izvestiya Akademiya Nauk SSSR, Seriya Geologicheskaya, v. 3, p. 5866. [In Russian]Google Scholar
Sergeev, V.N., and Schopf, J.W., 2010, Taxonomy, paleoecology and biostratigraphy of the Late Neoproterozoic Chichkan microbiota of South Kazakhstan: the marine biosphere on the eve of metazoan radiation: Journal of Paleontology, v. 84, p. 363401.Google Scholar
Sergeev, V.N., Knoll, A.H., and Grotzinger, J.P., 1995, Paleobiology of the Mesoproterozoic Billyakh Group, Anabar Uplift, Northeastern Siberia: Paleontological Society Memoir, v. 39, 37 p.Google Scholar
Sergeev, V.N., Knoll, A.H., Kolosova, S.P., and Kolosov, P.N., 1994, Microfossils in cherts from the Mesoproterozoic Debengda Formation, the Olenek Uplift, northeastern Siberia: Stratigraphy and Geological Correlation, v. 2(1), p. 2338. [English version]Google Scholar
Sergeev, V.N., Knoll, A.H., and Petrov, P.Yu., 1997, Paleobiology of the Mesoproterozoic-Neoproterozoic transition: the Sukhaya Tunguska Formation, Turukhansk Uplift, Siberia: Precambrian Research, v. 85, p. 201239.Google Scholar
Sergeev, V.N., Sharma, M., and Shukla, Y., 2008, Mesoproterozoic silicified microbiotas of Russia and India-characteristics and contrasts: Palaeobotanist, v. 57, p. 323358.Google Scholar
Sergeev, V.N., Sharma, M., and Shukla, Y., 2012, Proterozoic fossil cyanobacteria: Palaeobotanist, v. 61, p. 189358.Google Scholar
Sharma, M., 2006, Palaeobiology of Mesoproterozoic Salkhan Limestone Semri Group, Rohtas, Bihar, India: systematics and significance: Journal of Earth System Sciences, v. 115, p. 6778.Google Scholar
Song, X., 1984, Obruchevella from the Early Cambrian Meishucunian Stage of the Meishucun section, Jinning, Yunnan, China: Geological Magazine, v. 121, p. 179183.Google Scholar
Sovietov, Yu.K., 2008, Neoproterozoic rifting and sedimentary basins evolution located on the Tarim-type microcontinents: Maly Karatau, southern Kazakhstan, in Sedimentogenesis and Lithogenesis Types and their Evolution through Earth’s History, Transactions of 5th All-Russian Lithological Conference. Russian Academy of Science, Yekaterinburg. p. 143–146. [in Russian]Google Scholar
Srivastava, P., and Kumar, S., 2003, New microfossils from the Meso–Neoproterozoic Deoban Limestone, Garhwal, Lesser Himalaya, India: Palaeobotanist, v. 52, p. 1347.Google Scholar
Stanier, R.Y., Sistrom, Y.R., Hansen, T.A., Whitton, B.A., Castenholz, R.W., Pfennig, N., Gorlenko, V.M., Kondratieva, E.N., Eimhjellen, K.E., Whittenbury, R., Gherna, R.L., and Trüper, H.G. , H.G., 1978, Proposal to place nomenclature of the Cyanobacteria [blue-green algae] under the rules of the International Code of Nomenclature of bacteria: International Journal of Systematic Bacteriology, v. 28, p. 335336.Google Scholar
Talyzina, N., and Moczydłowska, M., 2000, Morphological and ultrastructural studies of some acritarchs from the Lower Cambrian Lukati Formation, Estonia: Review of Palaeobotany and Palynology, v. 112, p. 121.Google Scholar
Tappan, H., 1980, The Paleobiology of Plant Protists: San Francisco, Freeman, 1028 p.Google Scholar
Thuret, G., 1875, Essai de classification des nostocines: Annales des Sciences Naturelles: Paris (Botanique), v. 6, p. 372382.Google Scholar
Timofeev, B.V., and Hermann, T.N., 1979, The Precambrian microbiota of the Lakhanda Formation, in Sokolov, B.S., ed., Paleontology of Precambrian and Early Cambrian: Leningrad, Nauka, p. 137147. [in Russian]Google Scholar
Timofeev, B.V., Hermann, T.N., and Mikhailova, N.S., 1976, Microphytofossils from the Precambrian, Cambrian and Ordovician: Leningrad, Nauka, 106 p. [in Russian]Google Scholar
Turner, R.E., 1984, Acritarch from type area of the Ordovician Caradoc Series, Shropshire, England: Palaeontographica Abteilung B, v. 190(4-6), p. 87157.Google Scholar
Vidal, G., 1981, Micropalaeontology and biostratigraphy of the Upper Proterozoic and Lower Cambrian Sequence in East Finnmark, northern Norway: Norges Geologiske Underssogelse Bulletin, v. 362, p. 153.Google Scholar
Vidal, G., and Ford, T.D., 1985, Microbiotas from the Late Proterozoic Chuar Group (Northern Arizona) and Uinta Group (Utah) and their chronostratigraphic implications: Precambrian Research, v. 28, p. 344389.Google Scholar
Vidal, G., and Knoll, A.H., 1982, Radiations and extinctions of plankton in the late Proterozoic and early Cambrian: Nature, v. 296, p. 5760.Google Scholar
Vidal, G., and Moczydlłowska-Vidal, M., 1997, Biodiversity, speciation and extinction trends of Proterozoic and Cambrian phytoplankton: Paleobiology, v. 23, p. 230246.Google Scholar
Volkova, N.A., Kirjanov, V.V., Piskun, L.V., Paskeviciene, L.T., and Yankauskas, T.V., 1979, Plant microfossils, in Upper Precambrian and Cambrian Palaeontology of the East European Platform: Moscow, Nauka, p. 5–46. [English version, 1983, p. 7–46]Google Scholar
Vorob’eva, N.G., Sergeev, V.N., and Knoll, A.H., 2009, Neoproterozoic microfossils from the northeastern margin of the East European Platform: Journal of Paleontology, v. 83, p. 161196.Google Scholar
Wang, F., Zhang, X., and Guo, R., 1983, The Sinian microfossils from Jinning, Yunnan, Southwest China: Precambrian Research, v. 23, p. 133175.Google Scholar
Wettstein, F.V., 1924, Handbuch der Systematischer Botanik, 3rd ed., Leipzig, Franz Deutike, Band 1, 1017 p.Google Scholar
Wetzel, W., 1933, Die in organischer Substanz erhaltenen Mikrofossillien des baltischen Kreide-Feuersteins mit einem sediment-petrographischen und stratigraphischen Anhang: Palaeontographica Abteiling A, v. 77, p. 141186.Google Scholar
Williams, K.P.J., Nelson, J., and Dyer, S., 1997, The Renishaw Raman Database of Gemological and Mineralogical Materials: Gloucestershire, England, Renishaw Transducers Systems Division, 298 p.Google Scholar
Woese, C., and Fox, G., 1977, Phylogenetic structure of the prokaryotic domain: Proceedings of the National Academy of Sciences USA, v. 74, p. 50885090.Google Scholar
Wopenka, B., and Pasteris, J.D., 1993, Structural characterization of kerogens to granulite–facies graphite, p. applicability of Raman microprobe spectroscopy: American Mineralogist, v. 78, p. 533557.Google Scholar
Yankauskas, T.V., ed., 1989, Precambrian Microfossils of the USSR: Leningrad, Nauka, 188 p. [in Russian]Google Scholar
Yakschin, M.S., and Luchinina, V.A., 1981, New data on fossilized algae of the family Oscillatoriaceae (Kirchn.) Elenkin, in Precambrian-Cambrian Boundary Deposits of the Siberian Platform: Novosibirsk, Nauka, p. 2834. [in Russian]Google Scholar
Zhang, Y., 1981, Proterozoic stromatolite microfloras of the Gaoyuzhuang Formation (Early Sinian: Riphean), Hebei, China: Journal of Paleontology, v. 55, p. 485506.Google Scholar
Zhang, Z., 1985, Coccoid microfossils from the Doushantuo Formation (Late Sinian) of South China: Precambrian Research, v. 28, p. 163173.Google Scholar
Zhang, Y., and Yan, X., 1984, Microfossils from the Gaoyuzhuang Formation in Laishui County, Hebei, China: Acta Geologica Sinica, v. 3, p. 196204.Google Scholar
Zhang, Y., Yin, L., Xiao, S., and Knoll, A.H., 1998, Permineralized fossils from the Terminal Proterozoic Doushantuo Formation, China: Paleontological Society Memoir, v. 50, 56 p.Google Scholar
Zhegallo, E.A., Rozanov, A.Yu., Ushatinskaya, G.T., Hoover, R.B., Gerasimenko, L.M., and Ragozina, L.M., 2000, The Atlas of Microorganisms from the Ancient Khubsugul Phosphorites (Mongolia): Huntsville, Alabama, USA, 168 p.Google Scholar
Zhou, C., Yuan, X., Xiao, S., Chen, Z., and Xue, Y., 2004, Phosphatized fossil assemblage from the Doushantuo Formation in Baokang, Hebei Province: Acta Micropalaeontologica Sinica, v. 21, p. 349366.Google Scholar