Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T10:14:14.153Z Has data issue: false hasContentIssue false

Nacre in an early gryphaeid bivalve (Mollusca)

Published online by Cambridge University Press:  20 May 2016

Christopher A. McRoberts
Affiliation:
Department of Geology, Heroy Geology Laboratory, Syracuse University, Syracuse, New York 13244-1070
Joseph G. Carter
Affiliation:
Department of Geology, University of North Carolina at Chapel Hill 27599-3315

Extract

McRoberts (1992, figs. 4.13, 4.14, 6.8) illustrated the shell microstructure of late Triassic Gryphaea (Gryphaea) arcuataeformis Kiparisova, 1936, and Gryphaea (Gryphaea) nevadensis McRoberts, 1992. McRoberts (1992, p. 33) described the left valve of G. arcuataeformis as showing “neomorphosed calcite with multiple laminae of ?prismatic structure perpendicular to [the] outer shell surface ….” He described the left valve of G. nevadensis as consisting of two distinct layers of neomorphosed calcite:“…an outer layer with ?prismatic structure occasionally with bands of dark material (?micritic matrix), and a much thinner inner layer with ?cross-foliated structure ….” Subsequent study has shown these microstructural diagnoses to be inaccurate. They are revised as follows.

Type
Paleontological Notes
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carter, J. G. 1990a. Evolutionary significance of shell microstructure in the Palaeotaxodonta, Pteriomorphia and Isofilibranchia (Bivalvia: Mollusca), p. 135296. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Volume 1. Van Nostrand Reinhold, New York.Google Scholar
Carter, J. G. 1990b. Shell microstructural data for the Bivalvia; Part IV, Order Ostreoida, p. 347362. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Volume 1. Van Nostrand Reinhold, New York.Google Scholar
Carter, J. G., Bandel, K., de Buffrénil, V., Carlson, S. J., Castanet, J., Crenshaw, M. A., Dalingwater, J. E., Francillon-Vieillot, H., Géraudie, J., Meunier, F. J., Mutvei, H., de Ricqles, A., Sire, J. Y., Smith, A. B., Wendt, J., Williams, A., and Zylberberg, L. 1990. Glossary of skeletal biomineralization, p. 609671. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Volume 1. Van Nostrand Reinhold, New York.Google Scholar
Kiparisova, L. 1936. Upper Triassic pelecypods from the Kolyma-Indigirka Land. Transactions of the Arctic Institute, 30:71136 [in Russian with English summary].Google Scholar
McRoberts, C. A. 1992. Systematics and paleobiogeography of late Triassic Gryphaea (Bivalvia) from the North American Cordillera. Journal of Paleontology, 66:2839.Google Scholar
Newell, N. D. 1960. The orign of the oysters, p. 8186. In Report of the Twenty-first Session, Norden, Part XXII, Proceedings of the International Paleontological Union, International Geological Congress, Copenhagen.Google Scholar
Newell, N. D., and Boyd, D. W. 1970. Oyster-like Permian Bivalvia. Bulletin of the American Museum of Natural History, 143:217282.Google Scholar
Newell, N. D., and Boyd, D. W. 1989. Phylogenetic implications of shell microstructure in the Pseudomonotidae, extinct Bivalvia. American Museum Novitates, 2933:112.Google Scholar