Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T20:35:34.208Z Has data issue: false hasContentIssue false

Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland

Published online by Cambridge University Press:  20 May 2016

Marc LaFlamme
Affiliation:
1Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6,
Guy M. Narbonne
Affiliation:
1Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6,
Michael M. Anderson
Affiliation:
253 Sterling Crescent, St. John's, Newfoundland, Canada A1A 4J9

Abstract

Charniodiscus is a leaf-shaped Ediacaran (terminal Neoproterozoic) fossil with a worldwide distribution, but the scarcity of complete specimens has previously hindered evaluation of its taxonomy and ecology. The presence of hundreds of complete (fronds with stem and disc attached) Charniodiscus specimens from the Avalon Zone of Newfoundland has allowed for detailed morphometric analysis of Charniodiscus specimens and permits determination of characteristics which vary with growth (e.g., stem length, frond width, and disc diameter) versus those that reflect taxonomic differences (e.g., number of primary segments, presence of a distal spine, shape ratios). This has led to the recognition of three species of Charniodiscus in the Mistaken Point biota, including numerous specimens of two new taxa, C. procerus n. sp. and C. spinosus n. sp., and rare specimens of the Australian species C. arboreus. C. procerus n. sp. and C. spinosus n. sp. represent similar, yet ecologically distinct forms of upper-level filter feeders with diverging feeding strategies in order to reduce the competition for resources. Ratio plots and principal components analyses (PCAs) confirm the existence of five (possibly six) morphologically distinct species of Charniodiscus worldwide.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. M., and Misra, S. B. 1968. Fossils found in the Pre-Cambrian Conception Group of south eastern Newfoundland. Nature, 220:680681.Google Scholar
Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point, Avalon Zone, eastern Newfoundland), p. 89. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian-Cambrian Boundary. New York State Museum and Geological Survey Bulletin, 463.Google Scholar
Bowring, S. A., Myrow, P., Landing, E., and Ramenzani, J. 2003. Geochronological constraints on terminal Neoproterozoic events and the rise of Metazoans. Abstract 13045. NASA Astrobiology Institute (NAI) general meeting, Special Session VI: Early biosphere evolution, p. 113114.Google Scholar
Boynton, H. E., and Ford, T. D. 1995. Ediacaran fossils from the Precambrian (Charnian Supergroup) of Charnwood Forest, Leicestershire, England. Mercian-Geologist, 13:165182.Google Scholar
Buss, L. W., and Seilacher, A. 1994. The Phylum Vendobionta: a sister group of the Eumetazoa? Paleobiology, 20:14.Google Scholar
Cadima, J. F. C. L., and Jolliffe, I. T. 1996. Size and shape related principal component analysis. Biometrics, 52:710716.Google Scholar
Clapham, M. E., and Narbonne, G. M. 2002. Ediacaran epifaunal tiering. Geology, 30:627630.2.0.CO;2>CrossRefGoogle Scholar
Clapham, M. E., Narbonne, G. M., and Gehling, J. G. 2003. Paleoecology of the oldest-known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology, 29:527544.2.0.CO;2>CrossRefGoogle Scholar
Morris, S. Conway 1989. Southeastern Newfoundland and adjacent areas, p. 739. In Cowie, J. W. and Brasier, M. D. (eds.), The Precambian-Cambrian Boundary. Clarendon Press, Oxford.Google Scholar
Morris, S. Conway 1993. Ediacaran-like fossils in Cambrian Burgess Shale-type faunas of North America. Palaeontology, 36:593635.Google Scholar
Dzik, J. 2002. Possible ctenophoran affinities of the Precambrian “seapen” Rangea. Journal of Morphology, 252:315334.Google Scholar
Fedonkin, M. A. 1985. Skeleton-free fauna of the Vendian; morphological analysis, p. 1069. In Sokolov, B. S. E. and Ivanovskiy, A. B. (eds.), Paleontologiya; Paleontology, Vendskaya sistema; istoriko-geologicheskoye i paleontologicheskoye obosnovaniye. Nauka, Moscow.Google Scholar
Ford, T. D. 1958. Pre-Cambrian fossils from Charnwood Forest. Proceedings of the Yorkshire Geological Society, 31:211217.CrossRefGoogle Scholar
Ford, T. D. 1962. The oldest fossils. New Scientist, 15:191194.Google Scholar
Ford, T. D. 1963. The Pre-cambrian fossils of Charnwood Forest. Transactions of the Leicester Literature and Philosophical Society, 57:5762.Google Scholar
Ford, T. D. 1999. The Precambrian fossils of Charnwood Forest. Geology Today, 15:230234.Google Scholar
Gehling, J. G. 1991. The case for Ediacaran fossil roots to the metazoan tree. Geological Society of India Memoir, 20:181224.Google Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14:4057.Google Scholar
Gehling, J. G., Narbonne, G. M., and Anderson, M. M. 2000. The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology, 43:427456.Google Scholar
Glaessner, M. F. 1979. Biogeography and biostratigraphy: Precambrian, p. 79118. In Moore, R. C. (founder), Robinson, R. A., and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. A, Introduction, Fossilization (Taphonomy), Biogeography and Biostratigraphy. The Geological Society of America and the University of Kansas Press, Lawrence.Google Scholar
Glaessner, M. F., and Daily, B. 1959. The geology and Late Precambrian fauna of the Ediacara fossil reserve. Records of the South Australian Museum, 13:369407.Google Scholar
Glaessner, M. F., and Wade, M. 1966. The Late Precambrian fossils from Ediacara, South Australia. Palaeontology, 9:599628.Google Scholar
Gurich, G. 1929. Die ältesten fossilien Südafrika. Zeitschrift fur Praktische Geologie, 37:85.Google Scholar
Hunt, A. S. 1967. Growth, variation, and instar development of an agnostid trilobite. Journal of Paleontology, 41:203208.Google Scholar
James, F. C., and McCulloch, C. E. 1990. Multivariate analysis in ecology and systematics: Panacea or Pandora's Box? Annual Review of Ecology and Systematics, 21:129166.Google Scholar
Jenkins, R. J. F. 1985. The enigmatic Ediacaran (late Precambrian) genus Rangea and related forms. Paleobiology, 11:336355.Google Scholar
Jenkins, R. J. F. 1992. Functional and ecological aspects of Ediacaran assemblages, p. 131176. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Vol. 10. Topics in Geobiology. Plenum Press, New York.Google Scholar
Jenkins, R. J. F. 1996. Aspects of the geological setting and palaeobiology of the Ediacara assemblage, p. 3345. In Davies, M., Twidale, C. R., and Tyler, M. J. (eds.), Natural History of the Flinders Ranges. Vol. 7. Royal Society of South Australia, Richmond, South Australia.Google Scholar
Jenkins, R. J. F., and Gehling, J. G. 1978. A review of the frond-like fossils of the Ediacara assemblage. Records of the South Australian Museum, 17:347359.Google Scholar
Jones, B. 1974. A biometrical analysis of Atrypella foxi n. sp. from the Canadian Arctic. Journal of Paleontology, 48:963977.Google Scholar
Jongman, R. H. G., Ter Braak, C. J. F., and Van Tongeren, O. F. R. 1999. Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge, United Kingdom, 299 p.Google Scholar
Landing, E., Narbonne, G. M., Myrow, P., Benus, A., and Anderson, M. M. 1988. Faunas and depositional environments of the upper Precambrian through lower Cambrian, southeastern Newfoundland, p. 1852. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian-Cambrian Boundary. New York State Museum and Geological Survey Bulletin, Number 463.Google Scholar
Maisano, J. A. 2002. Terminal fusions of skeletal elements as indicators of maturity in squamates. Journal of Vertebrate Paleontology, 22:268275.Google Scholar
Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Evans, D. A. D., Fedonkin, M. A., and Kirschvink, J. L. 2000. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution. Science, 288:841845.Google Scholar
Misra, S. B. 1969. Late Precambrian (?) fossils from southeastern Newfoundland. Geological Society of America Bulletin, 80:21332140.Google Scholar
Misra, S. B. 1971. Stratigraphy and depositional history of late Precambrian coelenterate-bearing rocks, southeastern Newfoundland. Geological Society of America Bulletin, 82:979987.Google Scholar
Misra, S. B. 1981. Depositional environment of the late Precambrian fossil-bearing rocks of southeastern Newfoundland, Canada. Journal of the Geological Society of India, 22:375382.Google Scholar
Murphy, J. B., Nance, R. D., and Keppie, J. D. 2002. West African proximity of the Avalon Terrane in the latest Precambrian; discussion. Geological Society of America Bulletin, 114:10491050.Google Scholar
Murphy, J. B., Keppie, J. D., Dostal, J., and Nance, R. D. 1999. Neoproterozoic-early Paleozoic evolution of Avalonia. Geological Society of America Special Papers, 336:253266.Google Scholar
Nance, R. D., Murphy, J. B., Strachan, R. A., D'Lemos, R. S., and Taylor, G. K. 1991. Late Proterozoic tectonostratigraphic evolution of the Avalonian and Cadomian terranes. Precambrian Research, 53:4178.Google Scholar
Narbonne, G. M., and Gehling, J. G. 2003. Life after snowball: the oldest complex Ediacaran fossils. Geology, 31:2730.Google Scholar
Narbonne, G. M., and Hofmann, H. J. 1987. Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology, 30:647676.Google Scholar
Narbonne, G. M., Saylor, B. Z., and Grotzinger, J. P. 1997. The youngest Ediacaran fossils from Southern Africa. Journal of Paleontology, 71:953967.Google Scholar
Narbonne, G. M., Dalrymple, R. W., Gehling, J. G., Wood, D. A., Clapham, M. E., and Sala, R. A. 2001. Neoproterozoic fossils and environments of the Avalon Peninsula, Newfoundland. Field Trip B5, Geological Association of Canada-Mineralogical Association of Canada Joint Annual Meeting, St. John's, Newfoundland, 98 p.Google Scholar
Peterson, K. J., Waggoner, B., and Hagadorn, J. W. 2003. A fungal analog for Newfoundland Ediacaran fossils? Integrated and Comparative Biology, 43:127136.Google Scholar
Reyment, R. A., Blackith, R. E., and Campbell, N. A. 1984. Multivariate Morphometrics (second edition). London Academic Press, 233 p.Google Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society of London, 149:607613.Google Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14:8693.Google Scholar
Sokolov, B. S. 1973. Vendian of Northern Eurasia. Memoir-American Association of Petroleum Geologists, 19:204218.Google Scholar
Somers, K. M. 1986. Multivariate allometry and removal of size with Principal Components Analysis. Systematic Zoology, 35:359368.Google Scholar
Steiner, M., and Reitner, J. 2001. Evidence of organic structures in Ediacara-type fossils and associated microbial mats. Geology, 29:11191122.Google Scholar
Strauss, R. E., and Bookstein, F. L. 1982. The truss: body form reconstruction in morphometrics. Systematic Zoology, 31:113135.Google Scholar
Waggoner, B. 1999. Biogeographic analysis of the Ediacara biota: a conflict with paleotectonic reconstructions. Paleobiology, 25:440458.Google Scholar
Waggoner, B. 2003. The Ediacaran biotas in space and time. Integrated and Comparative Biology, 43:104113.Google Scholar
Wood, D. A., Dalrymple, R. W., Narbonne, G. M., Gehling, J. G., and Clapham, M. E. 2003. Paleoenvironmental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, southeastern Newfoundland. Canadian Journal of Earth Sciences, 40:13751391.Google Scholar