Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T19:17:55.616Z Has data issue: false hasContentIssue false

Morphological and paleoecological analysis of the Ordovician ankyroid Lagynocystis (Stylophora: Echinodermata)

Published online by Cambridge University Press:  20 May 2016

Ronald L. Parsley*
Affiliation:
Department of Geology, Tulane University, New Orleans, Louisiana 70118,

Abstract

Despite its atypical thecal plate pattern, Lagynocystis pyramidalis (Jaekel, 1918) (Middle Ordovician, Northern Gondwanaland) is composed of normally positioned marginal plates on the left side of the theca, whereas those on the right side are shortened or missing in comparison with marginal plates of other ankyroids. The only somatic on the lower thecal surface is the CS plate. The abnormally long distal aulacophore, reduced theca, and internal ctenoid organ are interpreted as adaptations to deep water, dysaerobic environmental conditions. Ctenoid organ morphology is re-evaluated and is interpreted to have both feeding and respiratory functions. Loss of plates relative to a presumed ancestor similar to Barrandeocarpus has resulted in torsion that places somatic platelets, originally on the superior face, onto the inferior face and in contact with both CS and M′3 plates.

Type
Research Article
Copyright
Copyright © The Paleontological Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrande, J. 1887. Classe des Echinodermes. Ordre des cystidées, p. 1233. In Systême silurien du centre de la Bohême, 7. Rivnác (Prague) and Gerhard (Leipzig).Google Scholar
Caster, K. E. 1952. Concerning Enoploura of the Upper Ordovician and its relation to other carpoid Echinodermata. Bulletins of American Paleontology, 34:556.Google Scholar
Chauvel, J. 1941. Recherches sur les cystoïdes et les carpoïdes armoricains. Mémoires de la Socíeté Géologique et Minéralogique de Bretagne, 5:5284.Google Scholar
Chauvel, J., and Nion, J. 1977. Echinodermes (Homalozoa: Cornuta et Mitrata) nouveaux pour l'Ordovicien du Massif Armorician et consequences paléogéographiques. Geobios, 10:3549.CrossRefGoogle Scholar
Cripps, A. P. 1989. A new stem-group chordate (Cornuta) from the Llandeilo of Czechoslovakia and the cornute-mitrate transition. Zoological Journal of the Linnean Society, 96:4985.CrossRefGoogle Scholar
Gill, E., and Caster, K. E. 1960. Carpoid echinoderms from the Silurian and Devonian of Australia. Bulletins of American Paleontology, 41:571.Google Scholar
Gutiérrez-Marco, J. C., Meléndez, B., Parsley, R. L., Prokop, R. J., and Marek, L. 1992. Equinodermos (Cystoidea, Homalozoa, Asterozoa) de afinidades bohémicas en el Ordovícico de las Zonas Centroibérica y Ossa Morena, Espania. Publicaciones del Museo de Geología de Extremadura, 1:7981.Google Scholar
Havlíček, V. 1982. Ordovician in Bohemia: development of the Prague Basin and its benthic communities. Journal of the Geological Sciences: Geology, 37:103136. Ústrední ústav geologický, Prague.Google Scholar
Henry, J.-L., Lefebvre, B., and Chauvan, D. 1997. Stratification thermique probable des eaux marines sur la marge gondwanienne (Massif Armoricain) pendant l'Ordovicien (Llanvirn): Implications paléogéographiques. Neues Jahrbuch für Geologie und Paläontologie Abhandlung, 205:373392.CrossRefGoogle Scholar
Jaekel, K A. 1900. Über carpoideen, eine neue class von Pelmatozoen. Deutsche Geologische Gesselschaft, 52(4):661677.Google Scholar
Jaekel, K A. 1918. Phylogenie und system der Pelmatozoen. Paläontologische Zeitschrift. 3:1128.CrossRefGoogle Scholar
Jefferies, R. P. S. 1967. Some fossil chordates with echinoderm affinities, p. 163208. In Millott, N. (ed.), Echinoderm Biology. Symposia of the Zoological Society of London, 20.Google Scholar
Jefferies, R. P. S. 1973. The Ordovician fossil Lagynocystis pyramidalis (Barrande) and the ancestry of amphioxus. Philosophical Transactions of the Royal Society of London, B. Biological Sciences, 265:409469Google Scholar
Jefferies, R. P. S. 1986. The Ancestry of the Vertebrates. British Museum (Natural History), London, 396 p.Google Scholar
Jefferies, R. P. S., and Prokop, R. 1972. A new calcichordate from the Ordovician of Bohemia and its anatomy, adaptations and relationships. Biological Journal of the Linnean Society, 4:69115.CrossRefGoogle Scholar
Kirk, E. 1911. The structure and relationships of certain eleutherozoic Pelmatozoa. Proceedings of the United States National Museum, 41:1137.CrossRefGoogle Scholar
Kolata, D. R., Frest, T. J., and Mapes, R. H. 1991. The youngest carpoid: occurrence, affinities, and life mode of a Pernnsylvanian (Morrowan) mitrate from Oklahoma. Journal of Paleontology, 65:844855.CrossRefGoogle Scholar
Kukal, Z. 1962. Petrografický výzkum vrtev sáreckych barrandského ordoviku. Sbornik Ústredniho Ustavu Geologickeho. Oddil geologicky, 27:175214.Google Scholar
Lefebvre, B, Racheboeuf, P., and David, B. 1998. Homologies in stylophoran echinoderms, p. 103109. In Mooi, R. and Telford, M. (eds.). Echinoderms: San Francisco. Balkema, Rotterdam.Google Scholar
Mikuláš, R. 1993. Trace fossils and ichnofossils of the Ordovician of the Prague Basin (central Bohemia, Czech Republic). Boletín de la Real Sociedad Española de Historia Natural: Sección Geologica, 88:99112.Google Scholar
Mikuláš, R. 1998. Ordovician of the Barrandian area: reconstruction of the sedimentary basin, its benthonic communities and ichnoassemblages. Journal of the Czech Geological Society, 43:43159.Google Scholar
Parsley, R. L. 1988. Feeding and respiratory strategies in Stylophora, p. 347361. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Liverpool Geological Society, Clarendon Press, Oxford.Google Scholar
Parsley, R. L. 1991. Review of selected North American mitrate stylophorans (Homalozoa: Echinodermata). Bulletins of American Paleontology. 100:557.Google Scholar
Parsley, R. L. 1997. The echinoderm classes Stylophora and Homoiostelea: non Calcichordata, p. 225248. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Paleontological Society Papers, 3.Google Scholar
Parsley, R. L. 1998. Taxonomic revision of the Stylophora, p. 111117. In Mooi, R. and Telford, M. (eds.), Echinoderms: San Francisco. Balkema, Rotterdam.Google Scholar
Sprinkle, J., and Longman, M. W. 1982. Echinoderm paleoecology, p 6775. In Sprinkle, (ed.), Echinoderm faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions, Monograph 1.Google Scholar
Ubaghs, G. 1961. Sur la nature de l'organe appèlé tige ou pédoncule chez lescarpoïdes Cornuta et Mitrata. Comptes Rendues de Sciences de l'Academie des Sciences, Paris, 53:27382740.Google Scholar
Ubaghs, G. 1968. Stylophora, p.S495S565. In Moore, R.C. (ed.), Treatise on Invertebrate Paleontology, Pt. S, Echinodermata, Volume 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ubaghs, G. 1969. Les echinodermes carpoides de l'Ordovicien inferieur de La Montagne Noir. Cahiers de Paléontologie, Paris, 112 p.Google Scholar
Ubaghs, G. 1979. Trois Mitrata (Echinodermata: Stylophora) nouveaux de l'Ordovicien de Tchecoslovaquie. Paläeontologische Zeitschrift, 53:98119.CrossRefGoogle Scholar
Ubaghs, G. 1991. Deux Stylophora (Homalozoa Echinodermata) nouveaux pour l'Ordovicien inférior de la Montagne Noire (France Meridionale). Paläntologische Zeitschrift, 65:157171.CrossRefGoogle Scholar
Ubaghs, G. 1999. Échinodermes nouveaux du Cambrien Supérior de la Montagne Noir (France Meridionale). Geobios, 31:6:809829.CrossRefGoogle Scholar
Wetherby, A. G. 1879. Description of a new family and genus of Lower Silurian Crustacea. Journal of the Cincinnati Society of Natural History, 1(4):162166, 2 pls.Google Scholar