Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T08:52:59.231Z Has data issue: false hasContentIssue false

Morphological analysis of phylogenetic relationships among extant rhynchonellide brachiopods

Published online by Cambridge University Press:  14 July 2015

Holly A. Schreiber
Affiliation:
Department of Geology, University of California Davis, One Shields Avenue, Davis, CA 94568, USA, ;
Maria Aleksandra Bitner
Affiliation:
Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00–818 Warszawa, Poland,
Sandra J. Carlson
Affiliation:
Department of Geology, University of California Davis, One Shields Avenue, Davis, CA 94568, USA, ;

Abstract

Rhynchonellida is the stratigraphically oldest and phylogenetically most basal of the extant rhynchonelliform brachiopod orders, yet phylogenetic relationships among rhynchonellides are poorly known. The fourteen named rhynchonellide superfamilies (four of which have extant representatives) were defined primarily on the basis of features of the dorsal cardinalia, particularly crural morphology, but their homology and polarity have not been investigated rigorously. Superfamily monophyly is unclear, as is the evolution of several distinctive rhynchonellide morphological features, such as crura.

The purpose of this study is to investigate the phylogenetic relationships among extant rhynchonellide genera using skeletal characters, and to compare the results with the current classification, elucidating the evolution of morphological features in the process. We completed parsimony-based and Bayesian analyses using fifty-eight characters of the interior and exterior of the shell that vary among the nineteen extant genera. Our results are readily interpretable with respect to the classification, and indicate that Hemithiridoidea, Dimerelloidea, and (in some analyses) Pugnacoidea appear to be monophyletic. Species classified in Dimerelloidea and Pugnacoidea, and in certain cases Hemithiridoidea, each form derived subclades that evolve from within a paraphyletic Norelloidea at the base of each subclade. Raduliform crura appear to be the most basal, phylogenetically; five other crural morphologies evolve from the raduliform state. However, morphological characters currently uniting genera in rhynchonellide superfamilies are not clearly diagnostic and exhibit a relatively high degree of homoplasy overall, suggesting that consistency with the classification may be based on a false sense of confidence in rhynchonellide morphology to clearly elucidate evolutionary relationships. Published molecular phylogenetic hypotheses conflict with the morphological topologies, further supporting this possibility.

The evolutionary trends among diagnostic characters of Recent rhynchonellides appear to reflect successive juvenilization in adult morphology in several subclades, suggesting that heterochrony may have played an important role in the evolution of the group.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, A. 1863. On the genera and species of Recent Brachiopoda found in the seas of Japan. Annals and Magazine of Natural History, 11:98101.Google Scholar
Ager, D. V. 1959. The classification of the Mesozoic Rhynchonelloidea. Journal of Paleontology, 33:324332.Google Scholar
Ager, D. V. 1965. Mesozoic and Cenozoic Rhynchonellacea, p. H597H625. InMoore, R. C.(ed.), Treatise on Invertebrate Paleontology. Pt. H. Brachiopoda. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ager, D. V., Childs, A., and Pearson, D. A. B. 1972. The evolution of Mesozoic Rhynchonellida. Geobios, 5:205235.CrossRefGoogle Scholar
Billings, E. 1859. Description of a new genus of Brachiopoda, and on the genus Cyrtodonta. Canadian Naturalist and Geologist, 4:301303.Google Scholar
Bitner, M. A. 2009. Recent Brachiopoda from the Norfolk Ridge, New Caledonia, with description of four new species. Zootaxa, 2235:139.CrossRefGoogle Scholar
Boucot, A. J., Johnson, J. G., and Staton, R. D. 1964. On some atrypoid, retzioid, and athyridoid Brachiopoda. Journal of Paleontology, 38:805822.Google Scholar
Bremer, K. 1994. Branch support and tree stability. Cladistics, 6:369372.CrossRefGoogle Scholar
Brunton, C. H. C. and Alvarez, F. 1989. The relationship between major lamellae and epithelial regressions in some articulate brachiopods. Lethaia, 22:247250.CrossRefGoogle Scholar
Buckman, S. S. 1918. The Brachiopoda of the Namyau Beds, Northern Shan States, Burma. Memoirs of the Geological Survey of India, Palaeontologia Indica (new series), 3 (2):1299.Google Scholar
Carlson, S. J. 1993. Phylogeny and evolution of ‘pentameride' brachiopods. Palaeontology, 36:807837.Google Scholar
Carlson, S. J. 1995. Phylogenetic relationships among extant brachiopods. Cladistics, 11:131197.CrossRefGoogle ScholarPubMed
Carlson, S. J. 2007. Recent research on brachiopod evolution, p. H2878H2900. InSeldon, P.A.(ed.), Treatise on Invertebrate Paleontology. Part H. Brachiopoda (revised) 6. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Carlson, S. J. and Leighton, L. R. 2001. The phylogeny and classification of Rhynchonelliformea. The Paleontological Society Papers, 7:2751.CrossRefGoogle Scholar
Carlson, S. J. and Fitzgerald, P. C. 2008. Sampling taxa, estimating phylogeny and inferring macroevolution: An example from Devonian terebratulide brachiopods. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 98:311325.CrossRefGoogle Scholar
Carlson, S. J., Boucot, A. J., Rong, Jia-Yu, and Blodgett, R. B. 2002. Pentamerida, p. H921H928. InKaesler, R. L.(ed.), Treatise on Invertebrate Paleontology. Pt. H. Brachiopoda (revised) 4, Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Clarke, J. A. and Middleton, K. M. 2008. Mosaicism, modules, and the evolution of birds: Results from a Bayesian approach to the study of morphological evolution using discrete character data. Systematic Biology, 57:185201.CrossRefGoogle Scholar
Cohen, B. L. 2001a. Brachiopod molecular phylogeny advances, p. 121128. InBrunton, C. H. C., Cocks, L. R. M., and Long, S.(eds.), Brachiopods Past and Present: Proceedings of the Millennium Brachiopod Congress. Systematics Association Special Volume Series, 63. Taylor, Francis, London.Google Scholar
Cohen, B. L. 2001b. Genetics and molecular systematics of brachiopods, p. 5367. InCarlson, S. J. and Sandy, M. R.(eds.), Brachiopods Ancient and Modern: A Tribute to G. Arthur Cooper, 7. Paleontological Society, Pittsburgh.Google Scholar
Cohen, B. L. 2007. The brachiopod genome, p. H2356H2372. InSelden, P. A.(ed.), Treatise on Invertebrate Paleontology. Pt. H. Brachiopoda (revised) 6. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Cohen, B. L. 2013. Rerooting the rDNA gene tree reveals phoronids to be ‘brachiopods without shells'; dangers of wide taxon samples in metazoan phylogenetics (Phoronida; Brachiopoda). Zoological Journal of the Linnean Society, 167:8292.CrossRefGoogle Scholar
Cohen, B. L. and Bitner, M. A. 2013. Molecular phylogeny of rhynchonellide articulate brachiopods (Brachiopoda, Rhynchonellida). Journal of Paleontology, 87:211216.CrossRefGoogle Scholar
Cohen, B. L. and Gawthrop, A. B. 1997. The brachiopod genome, p. H189H211. InKaesler, R. L.(ed.), Treatise on Invertebrate Paleontology. Pt. H. Brachiopoda (Revised) 1. Geological Society of America and Paleontological Institute Press, Lawrence.Google Scholar
Cohen, B. L. and Weydmann, A. 2005. Molecular evidence that phoronids are a subtaxon of brachiopods (Brachiopoda: Phoronata) and that genetic divergence of metazoan phyla began long before the early Cambrian. Organisms, Diversity and Evolution, 5:253273.CrossRefGoogle Scholar
Cooper, G. A. 1956. Chazyan and related brachiopods. Smithsonian Miscellaneous Collections, 127:11245.Google Scholar
Cooper, G. A. 1957. Tertiary and Pleistocene brachiopods of Okinawa, Ryukyu Islands. United States Geological Survey Professional Paper, 314A:20.Google Scholar
Cooper, G. A. 1959. Genera of Tertiary and recent rhynchonelloid brachiopods. Smithsonian Miscellaneous Collections, 139:190.Google Scholar
Cooper, G. A. 1972. Homeomorphy in Recent deep-sea brachiopods. Smithsonian Contributions to Paleobiology, 11:115.Google Scholar
Cooper, G. A. 1973. New Brachiopoda from the Indian Ocean. Smithsonian Contributions to Paleobiology, 16:143.Google Scholar
Cooper, G. A. 1981. Brachiopoda from the southern Indian Ocean (Recent). Smithsonian Contributions to Paleobiology, 43:193.Google Scholar
Cooper, G. A. 1982. New brachiopods from the Southern Hemisphere and Cryptopora from Oregon (Recent). Smithsonian Contributions to Paleobiology 41, 43pls.Google Scholar
Cooper, G. A. and Grant, R. E. 1969. New Permian brachiopods from west Texas. Smithsonian Contributions to Paleobiology, 1:120.CrossRefGoogle Scholar
Crane, A. 1886. On a brachiopod of the genus Atretia named in MS. by Dr. T. Davidson. Proceedings of the Scientific Meetings of the Zoological Society of London, p. 181184.Google Scholar
Dagys, A. S. 1968. Iurskie i rannemelovye brakhiopodi severa Sibiri [Jurassic and Lower Cretaceous brachiopods from North Siberia]. Trudy Instituta Geologii i Geofiziki, 41:1167.Google Scholar
Dagys, A. S. 1974. Triasovye brakhiopody (Morfologiia, sistema, filogeniia, stratigraficheskoe znachenie i biogeografiia) [Triassic brachiopods (Morphology, classification, phylogeny, stratigraphical significance and biogeography)]. Sibirskoe Otdelenie Izdatel'stvo “Nauka.” Novosibirsk, 214:1387.Google Scholar
Dall, W. H. 1895. Report on Mollusca and Brachiopoda dredged in deep water, chiefly near the Hawaiian Islands, with illustrations of hitherto unfigured species from northwest America. Scientific results of explorations by the U.S. Fish Commission Steamer Albatross. Proceedings of the United States National Museum, 17:675733.CrossRefGoogle Scholar
Dall, W. H. 1908. The Mollusca and the Brachiopoda. Reports on the dredging operations off the west coast of America to the Galapagos. Harvard University, Museum of Comparative Zoology Bulletin, 43:205487.Google Scholar
Dall, W. H. 1910. Report on the Brachiopoda obtained from the Indian Ocean by the Skylark Expedition, 1905. The Transactions of the Linnean Society of London, 13:439441.CrossRefGoogle Scholar
Dall, W. H. 1920. Annotated list of the Recent Brachiopoda in the collection of the United States National Museum, with descriptions of thirty-three new forms. Proceedings of the United States National Museum, 57:261377.CrossRefGoogle Scholar
Davidson, T. 1880. Report on the Brachiopoda Dredged by H.M.S. Challenger during the Years 1873–1876. Report of Scientific Results of the Challenger (Zoology), 1:167.Google Scholar
Davidson, T. 1886. On a living spinose Rhynchonella from Japan. Annals and Magazine of Natural History (series 5), 17:13.CrossRefGoogle Scholar
Debry, R. W. and Olmstead, R. G. 2000. A simulation study of reduced tree-search effort in bootstrap resampling analysis. Systematic Biology 49:171179.Google ScholarPubMed
Donoghue, M. J., Doyle, J. A., Gauthier, J., Kluge, A., and Rowe, T. 1989. The importance of fossils in phylogeny reconstruction. Annual Review of Ecology and Systematics 20:431461.CrossRefGoogle Scholar
Dunbar, C. O. and Condra, G. E. 1932. Brachiopoda of the Pennsylvanian System in Nebraska. Nebraska Geological Survey Bulletin (series 2), 5:1377.Google Scholar
Eldredge, N. and Cracraft, J. 1980. Phylogenetic Patterns and the Evolutionary Process. Method and Theory in Comparative Biology. Columbia University of Press, New York, 349p.Google Scholar
Elliott, G. F. 1958. Classification of thecidean brachiopods. Journal of Paleontology, 32:373.Google Scholar
Emig, C. C. 1992. Functional disposition of the lophophore in living Brachiopoda. Lethaia, 25:291302.CrossRefGoogle Scholar
Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39:783791.CrossRefGoogle ScholarPubMed
Fenton, C. L. 1928. The stratigraphy and larger fossils of the Plattin Formation in Ste. Genevieve County, Missouri. American Midland Naturalist, 11:125143.CrossRefGoogle Scholar
Fischer, P. 1887. Part 2, p. 5182. InDavidson, T., A monograph of Recent Brachiopoda. The Transactions of the Linnean Society of London. Second Series, Volume IV, Zoology.Google Scholar
Foster, M. W. 1974. Recent Antarctic and subantarctic brachiopods. Antarctic Research Series 21, 189p.CrossRefGoogle Scholar
Gmelin, J. F. 1790. Systema Naturae, edition decimal tertia aucta. Reformata I. Ps. VI. Vermes. Lipsiae, p. 30214120.Google Scholar
Gould, A. A. 1862. Descriptions of shells and molluscs from 1839–1862 Ostia conchologia. Boston, 256p.CrossRefGoogle Scholar
Grabau, A. W. 1932. The Brachiopoda, Part 3. Studies for students, I. Palaeontology. Science Quarterly of the National University of Peking, 3:75112.Google Scholar
Hall, J. 1860. Contributions to the Palaeontology of New York; 1858 and 1859. Appendix, Part F, of the 13th Annual Report of the Regents of the University of the State of New York on the condition of the State Cabinet of Natural History, and the Historical and Antiquarian Collection annexed thereto Albany, p.53125; observations on genera of Brachiopoda, p.6573; observations on the genera Athyris (=Spirigera), Merista (=Camarium), Meristella, and Leyorhynchus, p. 73–75; descriptions of new species of fossils from the Hamilton group of western New York, with notices of others from the same horizon in Iowa and Indiana, p. 76–94.Google Scholar
Hall, J. and Clarke, J. M. 1895. An introduction to the study of the genera of Palaeozoic Brachiopoda, Natural History of New York, Palaeontology, vol. 8 , part 2.New York Geological Survey. Charles van Benthuysen and Sons. Albany, xvi + 394 p.Google Scholar
Hayasaka, I. 1938. A new neotreme genus of Brachiopoda from Japan. Venus, 8:913.Google Scholar
Hedley, C. 1905. Mollusca (and Brachiopoda) from One Hundred and Eleven Fathoms, East of Cape Byron, New South Wales. Australian Museum Records, 6:4154.CrossRefGoogle Scholar
Helmcke, J. G. 1940. Die Brachiopoden der deutschen Tiefsee Expedition. Wiss. Ergeb. deutsch. Tiefsee Exped. Valdivia, Jena, 1898-99, 24:217316.Google Scholar
Hennig, W. 1966. Phylogenetic Systematics. University of Illinois Press, Urbana, 280p.Google Scholar
Hennig, W. 1969. Die Stammesgeschichte der Insekten. Kramer, Frankfurt, 436p.Google Scholar
Hiller, N. 1986. The South African Museum's Meiring Naude cruises, Part 16. Brachiopoda from the 1975–1979 cruises. Annals of the South African Museum, 97:97140.Google Scholar
Hillis, D. M. and Bull, J. J. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42:182192.CrossRefGoogle Scholar
Hillis, D. M. and Wiens, J. J. 2000. Molecules versus morphology in systematics: Conflicts, artifacts, and misconceptions, p. 119. InWiens, J. J.(ed.), Phylogenetic Analysis of Morphological Data. Smithsonian Series in Comparative Evolutionary Biology. Smithsonian Institution Press, Washington.Google Scholar
Holmer, L. E. and Popov, L. Y. 2000. Lingulata, p. H30H146. InKaesler, R. L.(ed.), Treatise on Invertebrate Paleontology. Pt. H. Brachiopoda (revised) 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
D'Hondt, J. L. 1987. Observations sur les Brachiopodes actuels de Nouvelle Calédonie et d'autres localités de l'Indo-Pacifique. Bulletin du Muséum national d'Histoire naturelle, Sciences de la Terre (4e série, section A), 9:3346.CrossRefGoogle Scholar
Huelsenbeck, J. P. and Rannala, B. 2000. Using stratigraphic information in phylogenetics, p. 165191. InWiens, J. J.(ed.), Phylogenetic analysis of morphological data. Smithsonian series in comparative evolutionary biology. Smithsonian Institution Press, Washington.Google Scholar
Huelsenbeck, J. P. and Ronquist, F. 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics, 17:754755.CrossRefGoogle Scholar
Huelsenbeck, J. P., Ronquist, F., Nielsen, R., and Bollback, J. P. 2001. Bayesian Inference of Phylogeny and its impact on evolutionary biology. Science, 294:23102314.CrossRefGoogle ScholarPubMed
Ivanova, E. A. 1972. Osnovnyye zakonomernosti evolyustii spiriferid (Brachiopoda). Paleontologicheskii Zhurnal, 2:2842.Google Scholar
Jackson, J. W. 1918. Brachiopoda. British Antactic (“Terra Nova”) Expedition 1910. British Museum of Natural History, Reports in Zoology, 2 (8):177202.Google Scholar
James, M., Ansell, A. D., Collins, M. J., Curry, G. B., Peck, L. S., and Rhodes, M. C. 1992. Biology of living brachiopods. Advances in Marine Biology, 28:175387.CrossRefGoogle Scholar
Janecki, T., Kidawa, A., and Potocka, M. 2010. The effects of temperature and salinity on vital biological functions of the Antarctic crustacean Serolis polita. Polar Biology, 33:10131020.CrossRefGoogle Scholar
Jefferies, R. P. S. 1979. The origin of chordates: A methodological essay, p. 443477. InHouse, M. R.(ed.), The Origin of Major Invertebrate Groups. Academic Press, London.Google Scholar
Jeffreys, J. G. 1869. The deep-sea dredging expedition in H.M.S. “Porcupine.” Nature, 1:135137.CrossRefGoogle Scholar
Joubin, L. 1901. Brachiopodes. Résultats du voyage du S.Y. Belgica, 1897-1898-1899, sous le commandement de A. de Gerlache de Gomery. Rapports Scientifiques publiés aux frais du Gouvernement Belge sous la direction de la Commission de la Belgica–Zoologie, vol. 7–9. J.-E. Buschmann. Anvers, p. 112.Google Scholar
Kearney, M. and Clark, J. M. 2003. Problems due to missing data in phylogenetic analyses including fossils: A critical review. Journal of Vertebrate Paleontology, 23:263274.CrossRefGoogle Scholar
Kitching, I. J., Williams, D., Forey, P. L., and Humphries, C. 1998. Cladistics: The Theory and Practice of Parsimony Analysis. Oxford University Press, Oxford, 248p.Google Scholar
Kolaczkowski, B. and Thornton, J. W. 2004. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature, 431:980984.CrossRefGoogle ScholarPubMed
Kuhn, O. 1949. Lehrbuch der Paläozoologie. E. Schweizerbart'sche Verlagsbuchhandlung. Stuttgart, 326p.Google Scholar
Kuzmina, T. V. and Malakhov, V. V. 2007. Structure of the Brachiopod Lophophore. Paleontological Journal, 41:520536.CrossRefGoogle Scholar
Labarbera, M. 1977. Brachiopod orientation to water movement; 1, Theory, laboratory behavior, and field orientations. Paleobiology, 3:270287.CrossRefGoogle Scholar
Labarbera, M. 1978. Brachiopod orientation to water movement; functional morphology. Lethaia, 11:6779.CrossRefGoogle Scholar
Labarbera, M. 1981. Water flow patterns in and around three species of articulate brachiopods. Journal of Experimental Marine Biology and Ecology, 55:185206.CrossRefGoogle Scholar
Lee, D. E. and Wilson, J. B. 1979. Cenozoic and recent rhynchonellide brachiopods of New Zealand-Systematics and variation in the genus Notosaria. Journal of the Royal Society of New Zealand, 9:437463.CrossRefGoogle Scholar
Lee, M. S. Y. and Worthy, T. H. 2012. Likelihood reinstates Archaeopteryx as a primitive bird. Biology Letters, 8:299303.CrossRefGoogle ScholarPubMed
Lewis, P. O. 2001a. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50:913925.CrossRefGoogle ScholarPubMed
Lewis, P. O. 2001b. Phylogenetic systematics turns over a new leaf. Trends in Ecology and Evolution, 16:3037.CrossRefGoogle Scholar
Logan, A. 2007. Geographic distribution of extant articulated brachiopods, p. H3083H3115. InSeldon, P. A.(ed.), Treatise on Invertebrate Paleontology. Pt. H. Brachiopoda (revised) 6. Geological Society of America and University of Kansas Press. Lawrence.Google Scholar
Logan, A. and Zibrowius, H. 1994. A new genus and species of rhynchonellid (Brachiopoda, Recent) from submarine caves in the Mediterranean Sea. Marine Ecology, 15:7788.CrossRefGoogle Scholar
Mabee, P. M. 2000. The usefulness of ontogeny in interpreting morphological characters, p. 84114. InWiens, J. J.(ed.), Phylogenetic Analysis of Morphological Data. Smithsonian Series in Comparative Evolutionary Biology. Smithsonian Institution Press, Washington.Google Scholar
Maddison, W. P., Donoghue, M. J., and Maddison, D. R. 1984. Outgroup analysis and parsimony. Systematic Zoology, 33:83103.CrossRefGoogle Scholar
Manceñido, M. O. 2000. Crural types among Post-Paleozoic Rhynchonellida (Brachiopoda). The Millenium Brachiopod Congress, 10–14 July 2000, London. Abstracts, p. 57.Google Scholar
Manceñido, M. O. and Motchurova-Dekova, N. 2010. A review of crural types, their relationships to shell microstructure, and significance among post-Paleozoic Rhynchonellida. Evolution and Development of the Brachiopod, Special Papers in Palaeontology Series, 84:203204.Google Scholar
Manceñido, M. O. and Owen, E. F. 1996. Post-Paleozoic rhynchonellides: An overview, p. 368. InCopper, P. and Jin, J.(eds.), Brachiopods: Proceedings of the Third International Brachiopod Congress. A. A. Balkema, Rotterdam.Google Scholar
Manceñido, M. O. and Owen, E. F. 2001. Post-Paleozoic Rhynchonellida (Brachiopoda): Classification and evolutionary background, p. H189H200. InCocks, L. R. M., Brunton, C. H. C., and Long, S. L.(eds.), Brachiopods Past and Present: Proceedings of the Millennium Brachiopod Congress. The Systematics Association Special Volume Series. Taylor and Francis, London.Google Scholar
Manceñido, M. O., Owen, E. F., and Sun, D.-L. 2007. Post-Paleozoic Rhynchonellida, p. H2727H2741. InSeldon, P. A.(ed.), Treatise on Invertebrate Paleontology. Pt. H. Brachiopoda (revised) 6. Geological Society of America and University of Kansas, Lawrence.Google Scholar
Motchurova-Dekova, N., Saito, M., and Endo, K. 2002. The Recent rhynchonellide brachiopod Parasphenarina cavernicola gen. et sp. nov. from the submarine caves of Okinawa, Japan. Paleontological Research, 6:299319.Google Scholar
Muir-Wood, H. M. 1955. A history of the classification of the phylum Brachiopoda. British Museum (Natural History), London. VII, 124p.Google Scholar
Muir-Wood, H. M. 1959. Report on the Brachiopoda of the John Murray Expedition. In The John Murray Expedition 1933–34, Scientific Reports, 10:283317.Google Scholar
Müller, J. and Reisz, R. R. 2006. The phylogeny of early eureptiles: Comparing parsimony and Bayesian approaches in the investigation of a basal fossil clade. Systematic Biology, 55:503511.CrossRefGoogle ScholarPubMed
Nomura, S. and Hatai, K. M. 1936. Diestothyris tisimana, a new species of Brachiopoda from the Northern Pacific. The Venus 6:131134.Google Scholar
Nylander, J. A. A., Ronquist, F., Huelsenbeck, J. P., and Nieves-Aldrey, J. L. 2004. Bayesian Phylogenetic Analysis of Combined Data. Systematic Biology, 53:4767.CrossRefGoogle ScholarPubMed
D'Orbigny, A. 1847. Considérations zoologiques et géologiques sur les brachiopodes ou palliobranches, parts 1–2. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Paris (2e série) 25 (5):193195; 25(7):266–269.Google Scholar
Pakhnevich, A. V. 2000. A Characterization of the Size and Age of a Small Population of Brachiopods Macandrevia cranium, p. 9799. InBenthos of the Seas of Russia and the Northern Atlantic Ocean, Vseross. Nauchno-Issled. Inst. Rybov. Okeanogr, Moscow.Google Scholar
Pakhnevich, A. V. 2009. Reasons of micromorphism in modern or fossil brachiopods. Paleontological Journal, 43:14581468.CrossRefGoogle Scholar
Peck, L. S. and Robinson, K. 1994. Pelagic larval development in the brooding Antarctic brachiopod Liothyrella uva. Marine Biology, 120:279286.CrossRefGoogle Scholar
Peck, L. S., Pörtner, H. O., and Hardewig, I. 2002. Metabolic demand, oxygen supply, and critical temperatures in the Antarctic bivalve Laternula elliptica. Physiological Biochemical Zoology, 75:123133.CrossRefGoogle ScholarPubMed
Peck, L.S., Webb, K. E., and Bailey, D. M. 2004. Extreme sensitivity of biological function to temperature in Antarctic marine species. Functional Ecology, 18:625630.CrossRefGoogle Scholar
Peck, L. S., Convey, P., and Barnes, D. K. A. 2006. Environmental constraints on life histories in Antarctic ecosystems: Tempos, timings, and predictability. Biological Reviews, 81:75109.CrossRefGoogle ScholarPubMed
Peck, L. S., Webb, K. E., Miller, A., Clark, M. S., and Hill, T. 2008. Temperature limits to activity, feeding and metabolism in the Antarctic starfish Odontaster validus. Marine Ecology Progress Series, 381:181189.CrossRefGoogle Scholar
Peck, L. S., Clark, M. S., Morley, S. A., Massey, A., and Rossetti, H. 2009. Animal temperature limits and ecological relevance: Effects of size, activity and rates of change. Functinal Ecology, 23:248256.CrossRefGoogle Scholar
Pennington, J. T, Tamburri, M. N., and Barry, J. P. 1999. Development, temperature tolerance, and settlement preference of embryos and larvae of the articulate brachiopod Laqueus californianus. The Biological Bulletin, 196:245256.CrossRefGoogle ScholarPubMed
Popov, L. Y., Bassett, M. G., and Holmer, L. E. 2000. Craniata, p. H158H168. InKaesler, R. L.(ed.), Treatise on Invertebrate Paleontology. Pt. H. Brachiopoda (revised) 2. Geological Society of America and Paleontological Institute, Lawrence.Google Scholar
Richardson, J. R. 1987. Brachiopods from carbonate sands of the Australian Shelf. Proceedings of the Royal Society of Victoria, 99:3750.Google Scholar
Ronquist, F. R. and Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19:15721574.CrossRefGoogle ScholarPubMed
Rudwick, M. J. S. 1970. Living and Fossils Brachiopods. Hutchinson and Company, London, 199p.Google Scholar
Rzhonsnitskaia, M. A. 1956. Systematization of Rhynchonellida, p. 125126. InGuzmán, E. and others (eds.),Resumenes de Los Trabajos Presentados. International Geological Congress, Mexico Report, 20.Google Scholar
Rzhonsnitskaia, M. A. 1960. Order Atrypida, p. 257264. InSarytcheva, T. G.(asst. ed.)Brakhiopody, Mshanki [Brachiopoda], Bryozoa, Orlov, Y. A.(ed.), Osnovy Paleontologii, Akademia Nauk SSSR. Moscow, 7.Google Scholar
Sanderson, M. J. 1989. Confidence limits on phylogenies: The bootstrap revisited. Cladistics, 5:113–29.Google ScholarPubMed
Savage, N. M. 1996. Classification of Paleozoic rhynchonellide brachiopods, p. 249260. InCopper, P. and Jin, J.(eds.), Brachiopods: Proceedings of the Third International Brachiopod Congress. A. A. Balkema, Rotterdam.Google Scholar
Savage, N. M, Manceñido, M. O., Owen, E. F., Carlson, S. J., Grant, R. E., Dagys, A. S., and Dong-Li, S. 2002. Rhynchonellida, p. H1027H1040. InKaesler, R. L.(ed.), Treatise on Invertebrate Paleontology. Pt. H. Brachiopoda (revised) 4. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Schreiber, H. A. and Carlson, S. J. 2009. Three-dimensional geometric morphometric analysis of Recent rhynchonellide brachiopod crura. Ninth North American Paleontological Convention Abstracts, Cincinnati, Abstracts 3:101.Google Scholar
Schuchert, C. 1913. Class 2. Brachiopoda, p. 355420. InK. A. von Zittel, Textbook of Palaeontology, vol. 1, part 1, second edition, translated and edited byEastman, Charles R.MacMillan, London.Google Scholar
Schuchert, C. 1929. Classification of brachiopod genera, fossils and recent, p. 1025. InSchuchert, Charles and LeVene, C. M., Brachiopoda (Generum et Genotyporum Index et Bibliographia). Fossilium Catalogus I: Animalia, Vol. 42. W. Junk. Berlin.Google Scholar
Schuchert, C. and Cooper, G. A. 1931. Synopsis of the brachiopod genera of the suborders Orthoidea and Pentameroidea, with notes on the Telotremata. American Journal of Science (series 5), 22:241255.CrossRefGoogle Scholar
Shi, X.-Y. and Grant, R. E. 1993. Jurassic Rhynchonellids: Internal Structures and Taxonomic Revisions. Smithsonian Contributions to Paleobiology, 73:1190.CrossRefGoogle Scholar
Shumard, B. F. 1860. Notice of new fossils from the Permian strata of New Mexico and Texas, collected by Dr. George G. Shumard, geologist of the U.S. Gov. Exp. for obtaining water by means of Artesian wells along the 32nd Parallel under the direction of Capt. John Pope. Academy of Science of St. Louis, Transactions, 1:290297.Google Scholar
Simon, E. and Willems, G. 1999. Gwynia capsula (Jeffreys, 1859) and other Recent brachiopods from submarine caves in Croatia. Bulletin de l'Institute Royal des Sciences naturelles de Belgique, Biologie, 69:1521.Google Scholar
Smirnova, T. N. 1990. Sistema rannemelovykh brachiopod [System of Early Cretaceous brachiopods]. Izdatel'stvo “Nauka.” Moscow, 240p.Google Scholar
Sowerby, G. B. 1846. Descriptions of thirteen new species of brachiopods. Proceedings of the Zoological Society of London, 14:9195.Google Scholar
Sperling, E. A., Robinson, J. M., Pisani, D., and Peterson, K. J. 2011. Molecular paleobiological insights into the origin of the Brachiopoda. Evolution and Development, 13:290303.CrossRefGoogle ScholarPubMed
Steele-Petrovic, H. M. 1979. The physiological differences between articulate brachiopods and filter-feeding bivalves as a factor in the evolution of marine level-bottom communities. Paleontology, 22:101134.Google Scholar
Swofford, D. L. 2001. PAUP∗ (Phylogenetic Analysis Using Parsimony (∗and Other Methods)) Version 4.0.Sunderland, MA. Sinauer Associates.Google Scholar
Thayer, C. W. 1981. Ecology of living brachiopods, p. 110126. InBroadhead, T. W.(ed.), Lophophorates, notes for a short course, Studies in Geological Science 5. University of Tennessee Press, Knoxville.Google Scholar
Thayer, C. W. 1986. Are brachiopods better than bivalves: Mechanisms of turbidity tolerance and their interaction with feeding in articulates. Paleobiology, 12:161174.CrossRefGoogle Scholar
Thomson, J. A. 1915. The genera of Recent and Tertiary rhynchonellids. Geological Magazine (decade VI), 2 (615):387392.CrossRefGoogle Scholar
Thomson, J. A. 1927. Brachiopod morphology and genera (Recent and Tertiary). New Zealand Board of Science and Art Manual 7, 333p.Google Scholar
Tunnicliffe, V. and Wilson, K. 1988. Brachiopod populations: Distribution in fjords of British Columbia (Canada) and tolerance of low oxygen concentrations. Marine Ecology Progress Series, 47:117128.CrossRefGoogle Scholar
Ulrich, E. O. and Cooper, G. A. 1936. New genera and species of Ozarkian and Canadian brachiopods. Journal of Paleontology, 10:616631.Google Scholar
Ulrich, E. O. and Cooper, G. A. 1942. New genera of Ordovician brachiopods. Journal of Paleontology, 16:620626.Google Scholar
Waagen, W. H. 1883. Salt-Range fossils, vol. I, Part 4, Productus Limestone fossils, Brachiopoda. Memoirs of the Geological Survey of India, Palaeontologia Indica (series 13), fasc. 2:391546.Google Scholar
Wagner, P. J. 1998. A likelihood approach for evaluation estimates of phylogenetic relationships among fossil taxa. Paleobiology, 24:430449.CrossRefGoogle Scholar
Wagner, P. J. 2000. The exhaustion of morphological character states among fossil taxa. Evolution, 54:365386.Google ScholarPubMed
Watrous, L. E. and Wheeler, Q. D. 1981. The outgroup comparison method of character analysis. Systematic Zoology, 33:83103.Google Scholar
Wiley, E. O. 1981. Phylogenetics, The Theory and Practice of Phylogenetic Systematics. Wiley-Blackwell, New York, 432p.Google Scholar
Williams, A. and Carlson, S. J. 2007. Affinities of brachiopods and trends in their evolution, p. H2822H2877. InSelden, P. A.(ed.), Treatise on Invertebrate Paleontology. Pt. H. Brachiopoda (revised) 6. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Williams, A., Carlson, S. J., Brunton, C. H. C., Holmer, L. E., and Popov, L. E. 1996. A supra-ordinal classification of the Brachiopoda. Philosophical Transactions of the Royal Society of London (series B), 351:11711193.Google Scholar
Williams, A., Brunton, C. H. C., and Mackinnon, D. I. 1997. Morphology, p. H321H440. InKaesler, R. L.(ed.), Treatise on Invertebrate Paleontology. Pt. H. Brachiopoda (revised) 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Williams, A., Carlson, S. J., and Brunton, C. H. C. 2000a. Brachiopod classification, p. H1H29. InKaesler, R. L.(ed.), Treatise on Invertebrate Paleontology. Pt. H. Brachiopoda (revised) 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Williams, A., Carlson, S. J., and Brunton, C. H. C. 2000b. Rhynchonelliformea, p. 193. InKaesler, R. L.(ed.), Treatise on Invertebrate Paleontology. Pt. H. Brachiopoda (revised) 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Woodward, S. P. 1855. Description of a new species of Recent Rhynchonella. The Annals and Magazine of Natural History (second series), 16:444.Google Scholar
Xu, G. 1990. Phenetic-cladistic systematic and geographic patterns of Triassic rhynchonellids, p. 6779. InMacKinnon, D. I., Lee, D. E., and Campbell, J. D.(eds.), Brachiopods Through Time. A. A. Balkema, Rotterdam.Google Scholar
Yabe, H. and Hatai, K. 1934. The Recent brachiopod fauna of Japan (1). New genera and subgenera. Proceedings of the Imperial Academy of Japan, 10:586589.CrossRefGoogle Scholar
Zezina, O. N. 1980. Structure, population growth and some biological characteristics of coldwater brachiopods from the southern hemisphere, p. 935. InEcological Research of the shelf. Oceanological Institute, Akademiia Nauk SSSR. Moscow.Google Scholar
Zezina, O. N. 1981. Recent deep-sea Brachiopoda from the western Pacific. Galathea Report, 15:720.Google Scholar
Zezina, O. N. 1985. Living brachiopods and problems of the bathyal oceans. Akademiia Nauk SSSR, Moscow, 247p.Google Scholar
Zezina, O. N. 2002. On the Ecological and Morphological Features of Brachiopods Inhabiting Marginal Areas, Submarine Caves, Summits of Seamounts, and the Environs of Hydrothermal Fields, p. 5557. InProblems of Biochronology in Paleontology and Geology. Abstracts of XLVIII Session of the Paleontological Society, St. Petersburg.Google Scholar