Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T05:31:06.423Z Has data issue: false hasContentIssue false

Metaphiomys (Rodentia: Phiomyidae) from the paleogene of southwestern Tanzania

Published online by Cambridge University Press:  14 July 2015

Nancy J. Stevens*
Affiliation:
Department of Biomedical Sciences, 228 Irvine Hall, College of Osteopathic Medicine, Ohio University, Athens 45701
Patrick M. O'Connor
Affiliation:
Department of Biomedical Sciences, 228 Irvine Hall, College of Osteopathic Medicine, Ohio University, Athens 45701
Michael D. Gottfried
Affiliation:
Department of Geological Sciences and Michigan State University Museum, West Circle Drive, Michigan State University, East Lansing 48824
Eric M. Roberts
Affiliation:
School of Geosciences, University of Witwatersrand, Wits 2050, Johannesburg, South Africa
Sifael Ngasala
Affiliation:
Department of Geological Sciences, University of Dar es Salaam, Tanzania
Mary R. Dawson
Affiliation:
Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, Pennsylvania 15213
*
Corresponding author, email <[email protected]>

Extract

The evolutionary history of the living African rodent families is a topic of considerable debate, yet it is generally agreed that the modern cane rats (Thryonomys Fitzinger, 1867) and dassie rats (Petromus Smith, 1831) have an evolutionary history within the infraorder Phiomorpha (e.g., Wood, 1968). Phiomorphs possess hystricognathous mandibular morphology, multiserial incisor enamel, and hystricomorphous attachment of the masseteric musculature (e.g., Lavocat, 1978; Holroyd, 1994). In his initial work on the group, Wood (1968) placed all phiomorph taxa into a single family, and named a handful of morphologically diverse species based mainly on size. Lavocat (1978) later revised the taxonomy of the group, raising many of the differences among species to the family level. More recently, Holroyd (1994) observed that these contrasting views likely stemmed from the fact that Wood's phiomorph work emphasized the overall similarity of Paleogene specimens from the Fayum of Egypt, whereas Lavocat endeavored to explain the diverse Miocene rodent faunas from East Africa, envisioning that each of the Miocene forms had an ancestor among the Paleogene taxa. In this paper we adopt Holroyd's (1994) revised version of family-level relationships among the phiomorphs.

Type
Paleontological Notes
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, C. W. 1914. On the Lower Miocene vertebrates from British East Africa, collected by Dr. Felix Oswald. Geological Society of London Quarterly Journal, 70:163186.Google Scholar
Damblon, F., Gerrienne, P., D'Outrelepont, H., Delvaux, D., Beeckman, H., and Back, S. 1998. Identification of a fossil wood specimen in the Red Sandstone Group of southwestern Tanzania: stratigraphic and tectonic implications. Journal of African Earth Sciences, 26(3):387396.Google Scholar
Ebinger, C., Deino, A., Drake, R., and Tesha, A. 1989. Chronology of volcanism and rift basin propagation: Rungwe Volcanic Province, East Africa. Journal of Geophysical Research, 94:1578515803.CrossRefGoogle Scholar
Fejfar, O. 1987. Oligocene rodents from Zallah Oasis, Libya. Munchner Geowiss Abh A, 10:265268.Google Scholar
Fitzinger, L. J. 1867. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, 56(1):141.Google Scholar
Flynn, L. J., Jacobs, L. L., and Cheema, I. U. 1986. Baluchimyinae, a new ctenodactyloid rodent subfamily from the Miocene of Baluchistan. American Museum Novitates, 2841:158.Google Scholar
Hinton, M. A. C. 1933. Diagnoses of new genera and species of rodents from Indian Tertiary deposits. Annual Magazine of Natural History, series 10, 12:620622.CrossRefGoogle Scholar
Holroyd, P. A. 1994. An examination of dispersal origins for Fayum Mammalia. Ph.D. dissertation, Duke University, Durham, North Carolina, 328 p.Google Scholar
Jaeger, J.-J. 1988. Rodent phylogeny: new data and old problems, p. 177199. In Benton, M. J. (ed.), The Phylogeny and Classification of the Tetrapods. The Systematics Association, Oxford.Google Scholar
Jaeger, J.-J., Denys, C., and Coiffait, B. 1985. New Phiomorpha and Anomaluridae from the late Eocene of North-West Africa: phylogenetic implications, p. 567588. In Luckett, W. P. and Hartenberger, J.-L. (eds.), Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis. Plenum Press, New York.CrossRefGoogle Scholar
Lavocat, R. 1962. Reflexions sur l'origine et la structure du groupe des rongeurs. Problemes Actuels de Paleontologie (Evolution des Vertebres), 104:287299.Google Scholar
Lavocat, R. 1973. Les Rongeurs du Miocene d'Afrique Orientale. I. Miocene inferieur. Memoires et Travaux de l'Institute Montpellier, 1:1284.Google Scholar
Lavocat, R. 1978. Rodentia and Lagomorpha, p. 6689. In Maglio, V. J. and Cooke, H. B. S. (eds.), Evolution of African Mammals. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Marivaux, L., and Welcomme, J.-L. 2003. New diatomyid and baluchimyine rodents from the Oligocene of Pakistan (Bugti Hills, Balochistan): systematic and paleobiogeographic implications. Journal of Vertebrate Paleontology, 23(2):420434.CrossRefGoogle Scholar
Marivaux, L., Vianey-Liaud, M., Welcomme, J.-L., and Jaeger, J.-J. 2002. The role of Asia in the origin and diversification of hystricognathous rodents. Zoologica Scripta, 31(3):225239.CrossRefGoogle Scholar
Morley, C. K., Cunningham, S. M., Harper, R. M., and Westcott, W. A. 1992. Geology and geophysics of the Rukwa Rift, East Africa. Tectonics, 11:6981.Google Scholar
O'Connor, P. M., Gottfried, M. D., Roberts, E. M., Stevens, N. J., Jackson, F., and Rasmusson, E. 2003. Closing the African gap: a new Cretaceous vertebrate fauna from Tanzania. Journal of Vertebrate Paleontology, 23(suppl. 3):84A.Google Scholar
Osborn, H. F. 1908. New fossil mammals from the Fayum Oligocene, Egypt. Bulletin of the American Museum of Natural History, 24:265272.Google Scholar
Roberts, E. M., O'Connor, P. M., Gottfried, M. D., Stevens, N. J., Kapilima, S., and Ngasala, S. 2004. Revised stratigraphy and age of the Red Sandstone Group in the Rukwa Rift Basin, Tanzania. Cretaceous Research, 25:749759.CrossRefGoogle Scholar
Smith, A. 1831. Petromus. South African Quarterly Journal, 1(5):1011.Google Scholar
Stevens, N. J., Gottfried, M. D., O'Connor, P. M., Roberts, E. M., and Kapilema, S. D. 2004. A new Paleogene fauna from the East African Rift, southwestern Tanzania. Journal of Vertebrate Paleontology, 24(suppl. 3):118A.Google Scholar
Stromer, E. 1922. Erste mitteilung über tertiäre Wirbeltier-Reste aus Deutsch-Südwestafrika. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, p. 331340.Google Scholar
Thomas, H., Roger, J., Sen, S., Bourdillon-de-Grissac, C., and Al-Sulaimani, Z. 1989. Decouverte de vertebres fossiles dans l'Oligocene inferieur du Dhofar (Sultanat d'Oman). Geobios, 22(1):101120.Google Scholar
Tiercelin, J. J., Chorowicz, J., Bellon, H., Richert, J. P., Mwanbene, J. T., and Walgenwitz, F. 1988. East African Rift System: offset, age and tectonic significance of the Tanganyika-Rukwa-Malawi intracontinental transcurrent fault zone. Tectonophysics, 148:241252.Google Scholar
Tullberg, T. 1899. Ueber das System der Nagethiere. Eine phylogenetische Studie. Nova Acta Royal Societie Scientific Upsalla, (3)18:1514.Google Scholar
Van der Beek, P., Mbede, E., Andriessen, P., and Delvaux, D. 1998. Denudation history of the Malawi and Rukwa Rift flanks (East African Rift System) from fission track thermochronology, p. 363385. In Delvaux, D. and Khan, M.A. (eds.), Tectonics, sedimentation and volcanism in the East African Rift System. Journal of African Earth Sciences, 26.Google Scholar
Wood, A. E. 1955. A revised classification of rodents. Journal of Mammalogy, 36:165187.Google Scholar
Wood, A. E. 1968. The African Oligocene Rodentia. Bulletin of the Peabody Museum of Natural History, 28:23105.Google Scholar