Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-03T08:32:20.974Z Has data issue: false hasContentIssue false

Late Cretaceous Inoceramid Bivalves of the Kuskokwim Basin, Southwestern Alaska, and Their Implications for Basin Evolution

Published online by Cambridge University Press:  11 August 2017

William P. Elder
Affiliation:
U.S. Geological Survey, Mail Stop 915, 345 Middlefield Road, Menlo Park, California 94025
Stephen E. Box
Affiliation:
West 920 Riverside Ave, Room 656, Spokane, Washington 99201

Abstract

Upper Cretaceous rocks of the Kuskokwim Group are exposed in a large region of southwestern Alaska and are mainly composed of deformed turbidite deposits that contain few fossils other than inoceramid bivalves. This paper documents the taxonomy of the inoceramids in the Kuskokwim Group, develops an inoceramid biostratigraphy based on known ranges in other regions, and analyzes biogeographic patterns, paleoecology, and depositional history of the Kuskokwim Group.

Most of the inoceramid bivalves present in the Kuskokwim Group are of Cenomanian and Turonian age, and an assemblage of species typical of late Turonian age rocks is particularly well developed. Only two localities appear to be as young as Santonian age. The following 16 species or subspecies are discussed and illustrated in detail: Birostrina tamurai Matsumoto and Noda, Inoceramus virgatus Schlüter, I. pennatulus Pergament, I. pictus minus Matsumoto, I. cf. I. yabei Nagao and Matsumoto, I.? sp. aff. I. costatus Nagao and Matsumoto, I. hobetsensis Nagao and Matsumoto, I. longealatus Tröger, I. frechi Flegel, I. waltersdorfensis waltersdorfensis Andert, I. cf. I. waltersdorfensis hannovrensis Heinz, I. kuskokwimensis n. sp., Mytiloides cf. M. opalensis (Böse), M. teraokai (Matsumoto and Noda), M. cf. M. incertus (Jimbo), and Sphenoceramus naumanni (Yokoyama). In addition, a specimen with affinities to Mytiloides striatoconcentricus carpathicus (Simionescu) and a specimen that may belong to the I. (Cremnoceramus?) rotundatus–I. (C.) erectus lineage are illustrated.

Most of the taxa present in the Kuskokwim region are found in other regions of the North Pacific, particularly Japan and eastern Siberia, or are found throughout the Northern Hemisphere. Only one species, I. kuskokwimensis n. sp., is new and may be endemic. North Pacific taxa are predominant in the Kuskokwim region, but intervals near the Cenomanian–Turonian Stage boundary and in the upper Turonian contain taxa characteristic of Europe and the Western Interior basin of North America; some of these taxa have not been recorded previously in the North Pacific region. Turonian heteromorph ammonite assemblages associated with inoceramids in the finer grained facies of the Kuskokwim region are similar to those found in coeval rocks of Japan and Germany.

The depositional area of the Kuskokwim Group can be broken into two northeast-trending subbasins, the Kuskokwim River subbasin to the northwest and the Mulchatna River subbasin to the southeast, connected by the Nushagak Hills corridor. Within the Kuskokwim River subbasin, deposition apparently started earlier in the north (middle Cenomanian) than in the south (late Cenomanian to early Turonian), and prograding deltaic sedimentation along the western margin also appears to have started earlier in the north. No marine fossils younger than latest Turonian to earliest Coniacian are known from the Kuskokwim River subbasin. The youngest fossils identified are Santonian in age and are from deep-water deposits in the Nushagak Hills corridor. Few fossils are known from the Mulchatna River subbasin and age control is limited.

Type
Research Article
Copyright
Copyright © 1992, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andert, H. 1911. Die Inoceramen des Kreibitz-Zittauer Sandsteingebirges. Sonderabruck aus der Festschrift des Humboldtvereins zur Feier seines 50 jahrigen Bestehens am 22 Oktober, 1911, Ebersbach: 3369.Google Scholar
Andert, H. 1934. Die Kreideablagerungen zwischen Elbe und Jeschken Teil III: die fauna der obersten Kreide in Sachsen, Böhmen und Schlesien. Abhandlungen der Preu$Szischen Geologischen Landesanstalt, 159:7477.Google Scholar
Blodgett, R. B., and Clough, J. G. 1985. The Nixon Fork terrane — part of an in-place peninsular extension of the North American Paleozoic continent. Geological Society of America Abstracts with Programs, 17:342.Google Scholar
Böhm, J. 1914. Zusammenstellung der Inoceramen der Kreideformation (Nachtrag). Jahrbuch der Königlich Preu$Szischen Geologischen Landesanstalt, Berlin, 35(1):595599.Google Scholar
Böhm, J. 1915. Inoceramen aus dem subherzynen Emscher und Untersenon. Zeitschrift der Deutschen Geologischen Gesellschaft, 67:183.Google Scholar
Böse, E. 1923. Algunas faunas Cretacicas de Zacatecas, Durango y Guerrero. Instituto Geologico de Mexico, Boletin 42, 219 p.Google Scholar
Box, S. E. 1985. Early Cretaceous orogenic belt in northwestern Alaska — internal organization, lateral extent and tectonic interpretation, p. 137145. In Howell, D. G. (ed.), Tectonostratigraphic Terranes of the Circum-Pacific Region. Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, Vol. 1, Houston, Texas.Google Scholar
Box, S. E. and Elder, W. P. 1992. Depositional and biostratigraphic framework of the Upper Cretaceous Kuskokwim Group, southwestern Alaska, p. 816. In Bradley, D. and Ford, A. (eds.), Geologic Studies in Alaska during 1990. U.S. Geological Survey Bulletin 1999:Google Scholar
Box, S. E. and Murphy, J. M. 1987. Late Mesozoic structural framework, eastern Bethel quadrangle, Alaska, p. 7882. In Hamilton, T. D. and Galloway, J. P. (eds.), Geologic Studies in Alaska by the U.S. Geological Survey during 1986. U.S. Geological Survey Circular 998.Google Scholar
Brongniart, A. 1822. In Cuvier, G., Recherches sur les Ossemens Fossiles. Paris, Dufour et E. d'Ocagne, Vol. 2, Part 2, p. 333609.Google Scholar
Bundtzen, T. K., and Laird, G. M. 1983. Geologic map of the Iditarod D-1 quadrangle, Alaska. Alaska Geological and Geophysical Surveys Professional Report 78, scale 1:63,360.Google Scholar
Cady, W. M., Wallace, R. E., Hoare, J. M., and Webber, E. J. 1955. The central Kuskokwim region, Alaska. U.S. Geological Survey Professional Paper 268, 132 p.Google Scholar
Cobban, W. A., and Gryc, G. 1961. Ammonites from the Seabee Formation (Cretaceous) of Northern Alaska. Journal of Paleontology, 35:176190.Google Scholar
Cobban, W. A. and Hook, S. C. 1989. Mid-Cretaceous molluscan record from west-central New Mexico, p. 247264. In New Mexico Geological Society Guidebook, 40th Field Conference, Southeastern Colorado Plateau.Google Scholar
Cox, L. R. 1969. Family Inoceramidae Giegel, p. N314N321. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. N, Mollusca 6, Bivalvia (1). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Decker, J. E. 1984. The Kuskokwim Group—a post-accretionary successor basin in southwest Alaska. Geological Society of America Abstracts with Programs, 16:327.Google Scholar
Decker, J. E., Blodgett, R. B., Box, S. E., Bundtzen, T. K., Clough, J. G., Coonrad, W. L., Gilbert, W. G., Miller, M. L., Murphy, J. M., Robinson, M. S., and Wallace, W. K. In press. Geology of southwestern Alaska. In Plafker, G., Jones, D. L., and Berg, H. C. (eds.), The Cordilleran Orogen—Alaska. The Geology of North America DNAG Series, Geological Society of America.Google Scholar
Decker, J. E. and Hoare, J. M. 1982. Sedimentology of the Cretaceous Kuskokwim Group, southwest Alaska, p. 8183. In Coonrad, W. L. (ed.), The United States Geological Survey in Alaska: Accomplishments during 1980. U.S. Geological Survey Circular 884.Google Scholar
Decker, J. E., Reifenstuhl, R. R., and Coonrad, W. L. 1984a. Compilation of geologic data from the Sleetmute A-5 quadrangle, southwestern Alaska. Alaska Division of Geological and Geophysical Surveys, Report of Investigations 84–29, scale 1:63,360.Google Scholar
Decker, J. E., Robinson, M. S., Murphy, J. M., Reifenstuhl, R. R., and Alabanese, M. D. 1984b. Geologic map of Sleetmute A-6 quadrangle. Alaska Division of Geological and Geophysical Surveys, Report of Investigations 84–10, scale 1:63,360.Google Scholar
Elder, W. P. 1989. Molluscan extinction patterns across the Cenomanian–Turonian Stage boundary in the western interior of the United States. Paleobiology, 15:299320.CrossRefGoogle Scholar
Fiege, K. 1930. Uber die Inoceramen des OberTuron mit besonderer Berucksichtigung der in Rheinland und Westfalen Vorkommenden Formen. Palaeontographica, 73:3147.Google Scholar
Flegel, K. 1904. Heuscheuer und Andersbach-Weckelsdorf. Eine Studie über die obere Kreide im böhmisch-schlesischen Gebirge, p. 123158. In Jahresbericht der Schlesischen Gesellschaft für Vaterländische Kultur, III.Google Scholar
Giebel, C. G. 1852. Allgemeine Palaeontologie: Entwurf einer systematischen Darstellung der Fauna und Flora der Vorwelt. Ambrosius Abel, Leipzig, 413 p.Google Scholar
Goldfuss, A. 1836. Petrefacta Germaniae. Arnz and Co., Düsseldorf, 312 p.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235:11561167.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A Geologic Time Scale 1989. Cambridge University Press, Cambridge, England, 263 p.Google Scholar
Heinz, R. 1932. Zur Gliederung der sächsisch-schlesisch-böhmischen Kreide unter Zugrundelegung der norddeutschen Stratigraphie (Beiträge zur Kenntnis der oberkretazischen Inoceramen X). Jahresbericht des Niedersächsischen geologischen Veriens 24, Hannover, p. 2353.Google Scholar
Heinz, R. 1935. Unterkreide-Inoceramen von der Kapverden-Insel Maio. Neues Jahrbuch für Mineralogie, Geologie, und Paläontologie, 73:302311.Google Scholar
Herm, D., Kauffman, E. G., and Wiedmann, J. 1979. The age and depositional environment of the “gosau”-Group (Coniacian–Santonian), Brandenberg/Tirol, Austria. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie, 19:2792.Google Scholar
Hoare, J. M. 1961. Geology and tectonic setting of Lower Kuskokwim–Bristol Bay region, Alaska. American Association of Petroleum Geologists Bulletin, 45:594611.Google Scholar
Imlay, R. W., and Reeside, J. B. Jr. 1954. Correlation of the Cretaceous formations of Greenland and Alaska. Geological Society of America Bulletin, 65:223246.CrossRefGoogle Scholar
Jeletzky, J. A. 1971. Marine Cretaceous biotic provinces and paleogeography of western and arctic Canada—illustrated by a detailed study of ammonites. Geological Survey of Canada Paper 70–22, 92 p.Google Scholar
Jimbo, K. 1894. Beiträge zur Kenntnis der Fauna die Kreideformation von Hokkaido. Paläontologishe Abhandlungen, N. F., 2:140198.Google Scholar
Jones, D. L. 1960. Upper Cretaceous pelecypods of the Genus Inoceramus from northern Alaska. U.S. Geological Survey Professional Paper 334–E: 149165.Google Scholar
Jones, D. L. 1967. Cretaceous ammonites from the lower part of the Matanuska Formation, southern Alaska. U.S. Geological Survey Professional Paper 547, 49 p.CrossRefGoogle Scholar
Jones, D. L., Silberling, N. J., Coney, P. J., and Plafker, G. 1987. Lithotectonic terrane map of Alaska (west of the 141st meridian). U.S. Geological Survey Miscellaneous Field Studies Map MF-1874-A, scale 1:250,000.Google Scholar
Kaplan, U., Kennedy, W. J., and Wright, C. W. 1987. Turonian and Coniacian Scaphitidae from England and north-western Germany. Geologisches Jahrbuch, Reihe A, 103:539.Google Scholar
Kauffman, E. G. 1973. Cretaceous Bivalvia, p. 353383. In Hallam, A. (ed.), Atlas of Paleobiogeography. Elsevier Publishing Company, Amsterdam, New York.Google Scholar
Kauffman, E. G. 1977a. Systematic, biostratigraphic, and biogeographic relationships between middle Cretaceous Euramerican and North Pacific Inoceramidae. Paleontological Society of Japan Special Paper 21:169212.Google Scholar
Kauffman, E. G. 1977b. Illustrated guide to biostratigraphically important Cretaceous macrofossils, Western Interior basin, U.S.A., p. 225274. In Kauffman, E. G. (ed.), Cretaceous Facies, Faunas, and Paleoenvironments across the Western Interior Basin, Field Guide. North American Paleontological Convention II. Mountain Geologist, 13(3, 4): 225–274.Google Scholar
Kauffman, E. G. 1978a. An outline of Middle Cretaceous marine history and inoceramid biostratigraphy in the Bohemian Basin, Czechoslovakia. Proceedings 2nd International Conference, Middle Cretaceous Working Group, IGCP. Annales du Museum d'Histoire Naturelle de Nice, France, Tome IV, p. XIII.1XIII.12.Google Scholar
Kauffman, E. G. 1978b. South African Middle Cretaceous Inoceramidae. Proceedings 2nd International Conference, Middle Cretaceous Working Group, IGCP. Annales du Museum d'Histoire Naturelle de Nice, France, Tome IV, p. XVII.1XVII.6.Google Scholar
Kauffman, E. G. and Powell, J. D. 1977. Paleontology, p. 47114. In Kauffman, E. G., Hattin, D. E., and Powell, J. D., Stratigraphie, Paleontologic, and Paleoenvironmental Analysis of the Upper Cretaceous Rocks of Cimarron County, Northwestern Oklahoma. Geological Society of America Memoir 149.Google Scholar
Keller, S. 1982. Die Oberkreide der Sack-Mulde bei Alfeld (Cenoman–Unter-Coniac) Lithologie, Biostratigraphie und Inoceramen. Geologisches Jahrbuch, Reihe A, Heft 64, 171 p.Google Scholar
Kennedy, W. J., Wright, C. W., and Hancock, J. M. 1987. Basal Turonian ammonites from west Texas. Paleontology, 30:2774.Google Scholar
Linné, C. Von. 1758. Systema naturae per regna tria naturae. Editio decema, reformata, Regnum Animale, Vol. 1. Holmiae, 824 p.Google Scholar
Matsumoto, T. 1959. Cretaceous ammonites from the upper Chitina Valley, Alaska. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, 8(3):4990.Google Scholar
Matsumoto, T. 1960. Upper Cretaceous ammonites of California, Part III. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, Special Volume II, 204 p.Google Scholar
Matsumoto, T. 1984. The so-called Turonian–Coniacian boundary in Japan. Bulletin of the Geological Society of Denmark, 33:171181.Google Scholar
Matsumoto, T. 1989. Some inoceramids (Bivalvia) from the Cenomanian (Cretaceous) of Japan—V, a world-wide species Inoceramus pictus Sowerby from Japan. Transactions and Proceedings of the Palaeontological Society of Japan, N. S., 153:1224.Google Scholar
Matsumoto, T. and Asai, A. 1989. Cenomanian (Cretaceous) inoceramids (Bivalvia) from Hokkaido and Sakhalin—I. Transactions and Proceedings of the Palaeontological Society of Japan, N. S., 155:178196.Google Scholar
Matsumoto, T. Asai, A. and Hirano, H. 1987. Some inoceramids (Bivalvia) from the Cenomanian (Cretaceous) of Japan.—II, three species from Hokkaido, well known abroad but hitherto undescribed in Japan. Transactions and Proceedings of the Palaeontological Society of Japan, N. S., 147:146164.Google Scholar
Matsumoto, T. Asai, A. and Hirano, H. and Noda, M. 1988. Some inoceramids (Bivalvia) from the Cenomanian (Cretaceous) of Japan—III, three species occurring commonly in the north-west Pacific region. Transactions and Proceedings of the Palaeontological Society of Japan, N. S., 149:378395.Google Scholar
Matsumoto, T., and Noda, M. 1968. An interesting species of Inoceramus from the Upper Cretaceous of Kyushu. Transactions and Proceedings of the Palaeontological Society of Japan, N. S., 71:317325.Google Scholar
Matsumoto, T., and Noda, M. 1975. Notes on Inoceramus labiatus (Cretaceous Bivalvia) from Hokkaido. Transactions and Proceedings of the Palaeontological Society of Japan, N. S., 100:188208.Google Scholar
Matsumoto, T., and Noda, M. 1983. Restudy of Inoceramus incertus Jimbo with special reference to its biostratigraphic implications. Proceedings of the Japan Academy, Series B, 59(5):109112.Google Scholar
Matsumoto, T., and Noda, M. 1985. A note on an inoceramid species (Bivalvia) from the lower Coniacian (Cretaceous) of Hokkaido. Transactions and Proceedings of the Palaeontological Society of Japan, N. S., 140:263273.Google Scholar
Matsumoto, T., and Noda, M. 1986. Some inoceramids (Bivalvia) from the Cenomanian (Cretaceous) of Japan—I, new or little known four species from Hokkaido and Kyushu. Transactions and Proceedings of the Palaeontological Society of Japan, N. S., 143:409421.Google Scholar
Matsumoto, T. Noda., M., and Kozai, T. 1982. VI. Upper Cretaceous inoceramids from the Monobe area, Shikoku. Palaeontological Society of Japan, Special Papers, 25:5368.Google Scholar
Matsumoto, T., and Ueda, Y. 1962. Palaeontological notes, p. 162178. In Ueda, Y. (ed.), The Type Himenowa Group. Memoires of the Faculty of Science, Kyushu University, Series D, Geology, 12.Google Scholar
Meek, F. B. 1876. A Report on the Invertebrate Cretaceous and Tertiary Fossils of the Upper Missouri Country. U.S. Geological Survey of the Territories, Invertebrate Paleontology, Vol. 9, 629 p.Google Scholar
Mertie, J. B. Jr. 1938. The Nushagak District, Alaska. U.S. Geological Survey Bulletin 903, 96 p.Google Scholar
Miller, M. L., and Bundtzen, T. K. 1988. Right-lateral offset solution for the Iditarod–Nixon Fork fault, western Alaska, p. 99103. In Galloway, J. P. and Hamilton, T. D. (eds.), Geologic Studies in Alaska by the U.S. Geological Survey during 1986. U.S. Geological Survey Circular 1016.Google Scholar
Moore, T. E., and Wallace, W. K. 1985. Submarine-fan facies of the Kuskokwim Group, Cairn Mountain area, southwestern Alaska. Geological Society of America Abstracts with Programs, 17:371.Google Scholar
Muller, J., and Jeletzky, J. 1970. Geology of the Upper Cretaceous Nanaimo Group, Vancouver and Gulf Islands, British Columbia. Geological Survey of Canada Paper 69–25, 77 p.Google Scholar
Murphy, J. M. 1987. Early Cretaceous cessation of terrane accretion, northern Eek Mountains, southwestern Alaska, p. 8385. In Hamilton, T. D. and Galloway, J. P. (eds.), Geologic Studies in Alaska by the U.S. Geological Survey during 1986. U.S. Geological Survey Circular 998.Google Scholar
Nagao, T., and Matsumoto, T. 1939. A monograph of the Cretaceous Inoceramus of Japan, Part I. Journal of the Faculty of Science, Hokkaido Imperial University, Series IV, Geology and Mineralogy, 4(3–4):241299.Google Scholar
Nagao, T., and Matsumoto, T. 1940. A monograph of the Cretaceous Inoceramus of Japan, Part II. Journal of the Faculty of Science, Hokkaido Imperial University, Series IV, Geology and Mineralogy, 6(1):164.Google Scholar
Newell, N. D. 1965. Classification of Bivalvia. American Museum Novitates, 2206:125.Google Scholar
Noda, M. 1975. Succession of Inoceramus in the Upper Cretaceous of southwest Japan. Memoires of the Faculty of Science, Kyushu University, Series D, Geology, 23(2):211261.CrossRefGoogle Scholar
Noda, M. 1984. Notes on Mytiloides incertus (Cretaceous Bivalvia) from the upper Turonian of the Pombets area, central Hokkaido. Transactions and Proceedings of the Paleontological Society of Japan, N. S., 136:455473.Google Scholar
Noda, M. 1988. Notes on Cretaceous inoceramids from Sakhalin, held at Tohoku University, Sendai, p. 137175. In Grant-Mackie, J. A., Matsuda, K., Mori, K., and Ogasawara, K. (eds.), Saito Ho-on Kai Special Publication (Professor Tamio Kotaka Commemorative Volume). Sendai, Japan.Google Scholar
Parkinson, J. 1819. Remarks on the fossils collected by Mr. Phillips near Dover and Folkestone. Geological Society of London Transactions, Series 1, 5:5259.Google Scholar
Patton, W. W. Jr., Dutro, J. T. Jr., and Chapman, R. M. 1977. Late Paleozoic and Mesozoic stratigraphy of the Nixon Fork area, Medfra quadrangle, Alaska, p. 3839. In Blean, K. M. (ed.), The United States Geological Survey in Alaska, Accomplishments during 1986. U.S. Geological Survey Circular 751–B.Google Scholar
Patton, W. W. Jr., Moll, E. J., Dutro, J. T. Jr., Silberman, M. L., and Chapman, R. M. 1980. Preliminary geologic map of the Medfra quadrangle, Alaska. U.S. Geological Survey Open-File Report 80-811-A, scale 1:250,000.Google Scholar
Pergament, M. A. 1965. Inocerams and Cretaceous stratigraphy of the Pacific Region. Academy of Sciences of the USSR, Geological Institute, Transactions, 118:1100 (in Russian, original title translated).Google Scholar
Pergament, M. A. 1966. Zonal stratigraphy and Inocerams of the lower-most Upper Cretaceous on the Pacific Coast of the USSR. Academy of Sciences of the USSR, Geological Institute, Transactions, 146:180 (in Russian, original title translated).Google Scholar
Pergament, M. A. 1971. Biostratigraphy and inocerams of the Pacific regions of the USSR. Academy of Sciences of the USSR, Geological Institute, Transactions, 212:1272 (in Russian, original title translated).Google Scholar
Pergament, M. A. 1974. Biostratigraphy and inocerams of Senonian (Santonian–Maastrichtian) of the USSR Pacific regions. Academy of Sciences of the USSR, Geological Institute, Transactions, Vol. 260, 211 p. (in Russian, original title translated). Google Scholar
Pergament, M. A. 1978. Upper Cretaceous stratigraphy and inocerami of the Northern Hemisphere. Academy of Sciences of the USSR, Geological Institute, Transactions, Vol. 322, 200 p. (in Russian, original title translated). Google Scholar
Reed, B. L., and Lanphere, M. A. 1974. Offset plutons and history of movement along the McKinley segment of the Denali fault system, Alaska. Geological Society of America Bulletin, 85:18831892.Google Scholar
Schlotheim, E. T. 1813. Beiträge zur Naurgeschichte der Versteinerungen in geognotischer Hinsicht. Leonard's Taschenbuch für Mineralogie, 7:93.Google Scholar
Schlüter, C. 1877. Kreide-Bivalven, zur Gattung Inoceramus . Palaeontographica, 24:249288.Google Scholar
Scott, G. R., Cobban, W. A., and Merewether, E. A. 1986. Stratigraphy of the Upper Cretaceous Niobrara Formation in the Raton basin, New Mexico. New Mexico Bureau of Mines and Mineral Resources Bulletin, 115:534.Google Scholar
Seitz, O. 1934 [1935]. Die Variabilität des Inoceramus labiatus v. Schloth. Jahrbuch der Preu$Szischen Geologischen Landesanstalt zu Berlin, 55:429474.Google Scholar
Sornay, J. 1974. Inocérames Turoniens D'Afghanistan. Annales de Paléontologie (Invertébrés), 60:2734.Google Scholar
Sornay, J. 1978. Précisions paléontologiques et stratigraphiques sur divers inocérames Cénomaniens et, en particulier, sur ceux de la Sarthe figurés par E. Guéranger en 1867. Géobios, 11:505515.Google Scholar
Sornay, J. 1981. Inocérames (Bivalvia) du Turonien Inférieur de Colombia (Amérique du Sud). Annales de Paléontologie (Invertébrés), 67:135148.Google Scholar
Sowerby, J. 1814. Article XI, Linnaean Society. Annals of Philosophy, London, 4:448.Google Scholar
Sornay, J. 1821. The mineral conchology of Great Britain. Richard Taylor, London, 3(53): 183.Google Scholar
Spurr, J. E. 1900. A reconnaissance in southwestern Alaska in 1898. Twentieth Annual Report of the U.S. Geological Survey, VII:31264.Google Scholar
Stanton, T. W. 1893. The Colorado Formation and its invertebrate fauna. U.S. Geological Survey Bulletin 106, 288 p.Google Scholar
Tamura, M., and Matsumura, M. 1974. On the age of the Mifune Group, central Kyushu, Japan, with a description of ammonite from the group by T. Matsumoto. Memoirs of the Faculty of Education, Kumamoto University, 23:4756.Google Scholar
Tanabe, K. 1973. Evolution and mode of life of Inoceramus (Sphenoceramus) naumanni Yokoyama Emend., and Upper Cretaceous Bivalvia. Transactions and Proceedings of the Palaeontological Society of Japan, N. S., 92:163184.Google Scholar
Tanabe, K. 1977a. Mid-Cretaceous scaphitid ammonites from Hokkaido. Paleontological Society of Japan, Special Papers, 21:1122.Google Scholar
Tanabe, K. 1977b. Functional evolution of Otoscaphites puerculus (Jimbo) and Scaphites planus (Yabe), Upper Cretaceous ammonites. Memoirs of the Faculty of Science, Kyushu University, Series D, 23:367407.Google Scholar
Tanabe, K. 1979. Palaeoecological analysis of ammonoid assemblages in the Turonian Scaphites facies of Hokkaido, Japan. Palaeontology, 22:609630.Google Scholar
Toshimitsu, S., and Maiya, S. 1986. Integrated inoceramid–foraminiferal biostratigraphy of the Upper Cretaceous of northwestern Hokkaido, Japan. Cretaceous Research, 7:307326.Google Scholar
Tröger, K. 1967. Zur Paläontologie, Biostratigraphie und faziellen Ausbildung der unteren Oberkreide (Cenoman bis Turon). Teil I, Paläontologie und Biostratigraphie der Inoceramen des Cenomans bis Turon Mitteleuropas: Abhandlungen Des Staatlichen Museums Fur Mineralogie und Geologie Zu Dresden, 12:13207.Google Scholar
Tanabe, K. 1981. Zu problemen der biostratigraphie der Inoceramen und der Untergliederung des Cenomans und Turons in Mittel-und Osteuropa. Newsletters on Stratigraphy, 9:139156.Google Scholar
Tanabe, K. 1989. Problems of Upper Cretaceous inoceramid biostratigraphy and paleogeography in Europe and western Asia, p. 911930. In Wiedmann, J. (ed.), Cretaceous of the Western Tethys: Proceedings of the 3rd International Cretaceous Symposium, Tübingen, 1987. Stuttgart, E. Schweizerbart'sche Verlagsbuchhandlung.Google Scholar
Wallace, W. K., and Engebretson, D. C. 1984. Relationships between plate motions and Late Cretaceous to Paleogene magmatism in southwestern Alaska. Tectonics, 3:295315.Google Scholar
Wallace, W. K., Hanks, C. L., and Rodgers, J. F. 1989. The southern Kahiltna terrane—implications for the tectonic evolution of southwestern Alaska. Geological Society of America Bulletin, 101:13891407.Google Scholar
Ward, P. D. 1978. Revisions of the stratigraphy and biochronology of the Upper Cretaceous Nanaimo Group, British Columbia and Washington State. Canadian Journal of Earth Sciences, 15:405–123.Google Scholar
Wiedmann, J., and Kauffman, E. G. 1978. Mid-Cretaceous biostratigraphy of northern Spain. Proceedings 2nd International Conference, Middle Cretaceous Working group, IGCP. Annales du museum d'Histoire Naturelle de Nice, France, Tome IV:III.1III.34.Google Scholar
Woods, H. 1904–1913. A monograph of the Cretaceous Lamellibranchia of England, Vol. 2. Palaeontographical Society, Monograph, London, 65, 473 p.Google Scholar
Yokoyama, M. 1890. Versteinerungen aus der japanischen Kreide. Palaeontographica, 36:159202.Google Scholar