Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T18:56:41.908Z Has data issue: false hasContentIssue false

Intra- and interspecific variation in the early internal shell features of some Cretaceous ammonoids

Published online by Cambridge University Press:  20 May 2016

Kazushige Tanabe
Affiliation:
Department of Earth and Planetary Science, University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan, , and
Neil H. Landman
Affiliation:
Division of Paleontology (Invertebrates), American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024,
Yuki Yoshioka
Affiliation:
Department of Earth and Planetary Science, University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan, , and

Abstract

Intra- and interspecific variation in the early internal shell features of ammonoids has been examined in 14 Late Cretaceous species representing four suborders on the basis of large samples from Hokkaido (Japan) and the U.S. Western Interior Province. Our observations indicate that quantitative characters such as the size of the initial chamber and ammonitella, the length of the prosiphon, and the ammonitella angle exhibit moderate variation within species. The ranges of variation partly overlap among species, indicating that these characters are not suitable for studies of the higher-level systematics of ammonoids, but may sometimes help diagnose species. In contrast, there is much less variation within species with respect to qualitative characters such as the shape of the prosiphon, the presence or absence of accessory threads of the prosiphon, the shape of the caecum, and the initial position of the siphuncle. Examination of these characters shows that they appear to be stable at the superfamily level for the Ammonitina, but variable among species in the Lytoceratina. Thus, these characters are potentially more useful for higher-level phylogenetic analysis.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, J. M. 1987. Reproduction and embryology of Nautilus , p. 353372. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus. Plenum Press, New York.CrossRefGoogle Scholar
Bandel, K. 1982. Morphologie und Bildung der frühontogenetschen Gehäuse bei conchiferen Mollusken. Facies, 7:1198.CrossRefGoogle Scholar
Bandel, K., Landman, N. H., and Waage, K. M. 1982. Microornament on early whorls of Mesozoic ammonites: implications for early ontogeny. Journal of Paleontology, 56:386391.Google Scholar
Birkelund, T. 1967. Submicroscopic structures in early growth-stages of Maastrichtian ammonites (Saghalinites and Scaphites). Meddeleser fra Dansk Geologisk Forening K⊘benhavn, 17:95101.Google Scholar
Birkelund, T. 1981. Ammonoid shell structure, p. 177214. In House, M. R. and Senior, J. R. (eds.), The Ammonoidea. Systematics Association, Special Volume 18. Academic Press, London.Google Scholar
Birkelund, T., and Hansen, H. J. 1968. Early shell growth and structures of the septa and the siphuncular tube in some Maastrichtian ammonites. Meddeleser fra Dansk Geologisk Forening K⊘benhavn, 18:7178.Google Scholar
Böhmers, J. C. A. 1936. Bau und Struktur von Schale und Sipho bei permischen Ammonoidea. Dissertation, Drukkerij University, Apeldoorn, 125 p.Google Scholar
Branco, W. 1879–80. Beiträge zur Entwicklungsgeschichte der fossilen Cephalopoden. Palaeontographica, 26, 1550 (1879), 27:17–81 (1880).Google Scholar
Druschits, V. V., and Doguzhaeva, L. A. 1974. Some morphogenetic characteristics of phylloceratids and lytoceratids (Ammonoidea). Paleontological Journal, 8:3748.Google Scholar
Druschits, V. V., and Doguzhaeva, L. A. 1981. Ammonites Under the Electron Microscope. Moscow University Press, Moskow, 238 p. (In Russian)Google Scholar
Druschits, V. V., and Khiami, N. 1970. Structure of the septa, protoconch walls and initial whorls in Early Cretaceous ammonites. Paleontological Journal, 4:2638.Google Scholar
Druschits, V. V., Doguzhaeva, L. A., and Lominadze, T. A. 1977b. Internal structural features of the shell of Middle Callovian ammonites. Paleontological Journal, 11:271284.Google Scholar
Druschits, V. V., Doguzhaeva, L. A., and Mikhailova, L. A. 1977a. The structure of the ammonitella and the direct development of ammonites. Paleontological Journal, 11:188199.Google Scholar
Eeben, H. K., Flajs, G., and Siehl, A. 1969. Die frühontogenetsche Entwicklung der Schallenstruktur ectocochleater Cephalopoden. Palaeontographica, Abt. A, 132:154.Google Scholar
Grandjean, F. 1910. Le siphon des ammonites et des belémnites. Société géologique de France Bulletin, Series 4, 10:496519.Google Scholar
House, M. R. 1993. Fluctuations in ammonoid evolution and possible environmental controls, p. 1334. In House, M. R. (ed.), The Ammonoidea: Environment, Ecology, and Evolutionary Change. Clarendon Press, Oxford.Google Scholar
Kennedy, W. J., and Cobban, W. A. 1979. Aspects of ammonite biology, biogeography, and biostratigraphy. Special Papers in Palaeontology, 17:194.Google Scholar
Klofak, S. M., Landman, N. H., and Mapes, R. H. 1999. Embryonic development of primitive ammonoids and the monophyly of the Ammonoidea, p. 2345. In Olóriz, F. and Rodríguez-Tover, F. (eds.), Advancing Research on Living and Fossil Cephalopoda. Kluwer Academic/Plenum Publishers, New York.CrossRefGoogle Scholar
Kulicki, C. 1974. Remarks on the embryology and postembryonal development of ammonites. Acta Palaeontologica Polonica, 19:201224.Google Scholar
Kulicki, C. 1979. The ammonite shell: its structure, development and biological significance. Palaeontologica Polonica, 39:97142.Google Scholar
Kulicki, C. 1989. Archaeogastropod model of mineralization of ammonitella shell, p. 324. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes, and Evolutionary Trends; Short Course in Geology, Volume 5, Pt. II. American Geophysical Union, Washington, D. C.Google Scholar
Kulicki, C. 1996. Ammonoid shell microstructure, p. 65101. In Landman, N. H., Tanabe, K., and Davis, R. A. (eds.), Ammonoid Paleobiology. Plenum Press, New York.CrossRefGoogle Scholar
Kulicki, C., and Doguzhaeva, L. A. 1994. Development and calcification of the ammonitella shell. Acta Palaeontologica Polonica, 39:1744.Google Scholar
Kulicki, C., Landman, N. H., Heaney, M. J., Mapes, R. H., and Tanabe, K. 2001. Morphology of the early whorls of goniatites from the Carboniferous Buckhorn Asphalt (Oklahoma) with aragonitic preservation. Abhandlungen der Geologischen Bundesanstalt, 57:205224.Google Scholar
Landman, N. H. 1982. Embryonic shells of Baculites . Journal of Paleontology, 56:12351241.Google Scholar
Landman, N. H. 1987. Ontogeny of Upper Cretaceous (Turonian-Santonian) scaphitid ammonites from the Western Interior of North America: systematics, developmental patterns, and life history. Bulletin of the American Museum of Natural History, 185(2): 118241.Google Scholar
Landman, N. H., and Bandel, K. 1985. Internal structures in the early whorls of Mesozoic ammonites. American Museum, Novitates, 2823:121.Google Scholar
Landman, N. H., Tanabe, K., and Shigeta, Y. 1996. Ammonoid embryonic development, p. 343405. In Landman, N. H., Tanabe, K., and Davis, R. A. (eds.), Ammonoid Paleobiology. Plenum Press, New York.CrossRefGoogle Scholar
Mangold, K. 1987. Reproduction, p. 157200. In Boyle, P. R. (ed.), Cephalopod Life Cycles, Volume II. Academic Press, London.Google Scholar
Miller, A. K., and Unklesbay, A. G. 1943. The siphuncle of Late Paleozoic ammonoids. Journal of Paleontology, 17:125.Google Scholar
Ohtuska, Y. 1986. Early internal shell microstructure of some Mesozoic Ammonoidea: implications for higher taxonomy. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 141:275288.Google Scholar
Page, K. N. 1993. Mollusca: Cephalopoda (Ammonoidea: Phylloceratina, Lytoceratina, Ammonitina and Ancyloceratina), p. 213227. In Benton, M. J. (ed.), The Fossil Record 2. Chapman and Hall, London.Google Scholar
Rouget, I., and Neige, P. 2001. Embryonic ammonoid shell features: intraspecific variation revised. Palaeontology, 44:5364.CrossRefGoogle Scholar
Shigeta, Y. 1989. Systematics of the ammonite genus Tetragonites from the Upper Cretaceous of Hokkaido. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 156:319342.Google Scholar
Shigeta, Y. 1993. Post-hatching early life history of Cretaceous Ammonoidea. Lethaia, 26:133145.CrossRefGoogle Scholar
Shigeta, Y., Zakharov, Y. D., and Mapes, R. H. 2001. Origin of the Ceratitida (Ammonoidea) inferred from the early internal shell features. Palaeontological Research, 5:201214.Google Scholar
Shimizu, S. 1929. On siphuncle in some Upper Cetaceous ammonites. Saitohoonkai Museum of Natural History, Publications, 3:91116. (In Japanese)Google Scholar
Smith, J. P. 1898. The development of Lytoceras and Phylloceras . Proceedings of the California Academy of Science (Geology), 1:129160.Google Scholar
Stanley, S. M. 1979. Macroevolution. Freeman, San Francisco, 332 p.Google Scholar
Tanabe, K. 1977a. Functional evolution of Otoscaphites puerculus (Jimbo) and Scaphites planus (Yabe), Upper Cretaceous ammonites. Memoirs of the Faculty of Science, Kyushu University, Series D (Geology), 23:367407.CrossRefGoogle Scholar
Tanabe, K. 1977b. Mid-Cretaceous scaphitid ammonites from Hokkaido. Palaeontological Society of Japan, Special Papers, 21:1122.Google Scholar
Tanabe, K. 1989. Endocochliate embryo model in the Mesozoic Ammonitida. Historical Biology, 2:183196.CrossRefGoogle Scholar
Tanabe, K., and Ohtsuka, Y. 1985. Ammonoid early internal shell structure: its bearing on early life history. Paleobiology, 11:310322.CrossRefGoogle Scholar
Tanabe, K., Fukuda, Y., and Obata, I. 1980. Ontogenetic development and functional morphology in the early growth stages of three Cretaceous ammonites. Bulletin of the National Science Museum, Tokyo, Series C (Geology), 6:926.Google Scholar
Tanabe, K., Landman, N. H., and Mapes, R. H. 1994. Early shell features of some Late Paleozoic ammonoids and their systematic implications. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 173:383400.Google Scholar
Tanabe, K., Shigeta, Y., and Mapes, R. H. 1995. Early life history of Carboniferous ammonoids inferred from analysis of fossil assemblages and shell hydrostatics. Palaios, 10:8086.CrossRefGoogle Scholar
Tanabe, K., Kulicki, C., Landman, N. H., and Mapes, R. H. 2001. External features of embryonic and early postembryonic shells of a Carboniferous goniatite Vidrioceras from Kansas. Paleontological Research, 5:1319.Google Scholar
Tanabe, K., Landman, N. H., Mapes, R. H., and Faulkner, C. J. 1993. Analysis of a Carboniferous embryonic ammonoid assemblage from Kansas, U. S. A. Lethaia, 26:215224.CrossRefGoogle Scholar
Tanabe, K., Obata, I., Fukuda, Y., and Futakami, M. 1979. Early shell growth in some Upper Cretaceous ammonites and its implications to major taxonomy. Bulletin of the National Science Museum, Tokyo, Series C (Geology), 5:155176.Google Scholar
Wright, C. W. 1996. Cretaceous Ammonoidea, p. 362. In Keasler, R. L. (ed.), Treatise on Invertebrate Paleontology, Volume 4, Pt. L, Mollusca 4 (revised). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Zakharov, Y. D. 1974. New data on internal shell structure in Carboniferous, Triassic and Cretaceous ammonoids. Paleontological Journal, 8:2536.Google Scholar