Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T03:51:10.409Z Has data issue: false hasContentIssue false

Intra- and interspecific variation in internal structures of the genus Stenosarina (Brachiopoda, Terebratulida) using landmarks

Published online by Cambridge University Press:  14 July 2015

A. Tort
Affiliation:
Université de Bourgogne, 6 boulevard Gabriel, F-21000 Dijon, France,
B. Laurin
Affiliation:
Université de Bourgogne, 6 boulevard Gabriel, F-21000 Dijon, France,

Abstract

Although a number of brachiopod genera have been defined mainly from their internal structures, the fixity of those structures has rarely been investigated. Variability of the rather simple loops of two New Caledonian species of the Recent genus Stenosarina (Terebratulida), one species having a variant with endemic morphology, provides insight into the relationship between the two species. Procrustes methods based on landmarks are used. Intra-population variability is found to be of the same order of magnitude as inter-population variability. Moreover, the morphological distance between the endemic variant and the other specimens is greater than the distance between the two species of Stenosarina. The study also identifies a morphocline between the three forms of Stenosarina under study.

Type
Research Article
Copyright
Copyright © The Paleontological Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bookstein, F. L. 1981. Looking at mandibular growth: some new geometrical methods, p. 7479. In Carlson, D. (ed.), Craniofacial Biology. University of Michigan, Press Ann Arbor.Google Scholar
Bookstein, F. L. 1984. Tensor biometrics for changes in cranial shape. Annals of Human Biology, 11:413437.CrossRefGoogle ScholarPubMed
Bookstein, F. L. 1991. Morphometric Tools for Landmark Data. Geometry and Biology. Cambridge University Press, Cambridge, 435 p.Google Scholar
Bookstein, F. L. 1996. Combining the tools of geometric morphometrics, p. 131151. In Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P., and Slice, D. (eds.), Advances in Morphometrics. Plenum Press, New York and London.CrossRefGoogle Scholar
Boullier, A., Delance, J.-H., Emig, C. C., D'Hondt, J.-L., Gaspard, D., and Laurin., B. 1986. Les populations actuelles de Gryphus vitreus (Brachiopoda) en Corse, Implications paléontologiques, p. 179196. In Racheboeuf, P. R. and Emig, C. C. (eds.), Les Brachiopodes Fossiles et Actuels. Biostratigraphie du Paléozoïque 4 Université de Bretagne Occidentale, Brest.Google Scholar
Chapman, R. E. 1990. Conventional Procrustes approaches, p. 251267. In Rohlf, F. J. and Bookstein, F. L. (eds.), Proceedings of the Michigan Morphometrics Workshop. University of Michigan Museum of Zoology, Ann Arbor.Google Scholar
Chapman, R. E., and Brett-Surman., M. K. 1990. Morphometric observation on hadrosaurid ornithopods, p. 163177. In Carpenter, K. and Currie, P. J. (eds.), Dinosaur Systematics, Approaches and Perpesctives. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Cooper, G. A. 1977. Brachiopods from the Caribbean Sea and Adjacent Waters. Studies in tropical oceanography Miami, 14, 212 p., 35 pl.Google Scholar
Cooper, G. A. 1983. The Terebratulacea (Brachiopoda), Triassic to Recent: A Study of the Brachidia (Loops). Smithsonian Contributions to Paleobiology, 50, 445 p., 77 pl.Google Scholar
David, B., and Laurin., B. 1992. Procrustes: An Interactive Program for Shape Analysis Using Landmarks, Version 2.0. Paleont. Analytique publish., Dijon.Google Scholar
David, B., and Laurin., B. 1996. Morphometries and cladistics: measuring phylogeny in the sea urchin Echinocardium . Evolution, 50(1):348359.CrossRefGoogle Scholar
Felsenstein, J. 1990. PHYLIP (Phylogeny Inference Package), Version 3.3. University of Washington.Google Scholar
Laurin, B. 1997. Brachipodes récoltés dans les eaux de la Nouvelle-Calédonie et des ǐles Loyauté, Matthew et Chesterfield, p. 411471. In Crosnier, A. (ed.), Résultats des Campagnes MUSORSTOM. Volume 18. Mémoires du Muséum National d'Histoire Naturelle, 176 p.Google Scholar
Reilly, S. M. 1990. Comparative ontogeny of cranial shape in salamanders using resistant Fit Theta Rho analysis, p. 311321. In Rohlf, F. J. and Bookstein, F. L. (eds.), Proceedings of the Michigan Morphometries Workshop. University of Michigan Museum of Zoology, Ann Arbor.Google Scholar
Rohlf, F. J. 1990. Rotational fit (Procrustes) methods, p. 227236. In Rohlf, F. J. and Bookstein, F. L. (eds.), Proceedings of the Michigan Morphometries Workshop. University of Michigan Museum of Zoology, Ann Arbor.Google Scholar
Sneath, P. H. A. 1967. Trend-surface analysis of transformation grids. Journal of Zoology, 151:65122.CrossRefGoogle Scholar
Tort, A. 2000. Caractérisation quantitative de la morphologie externe et interne de Terebratulida (Brachiopodes) actuels et Jurassiques. Implications systématiques. Unpublished thesis. Université de Bourgogne, Dijon, 250 p., 4 pl.Google Scholar
Williams, A., Brunton, C. H. C., and MacKinnon., D. I. 1997. Morphology, p. 321440. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology, Pt. H, Brachiopoda 1 (Revised). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Zelditch, M. L., Bookstein, F. L., and Lundrigan., B. L. 1992. Ontogeny of integrated skull growth in the cotton rat Sigmodon fulviventer . Evolution, 46:11641180.CrossRefGoogle ScholarPubMed