Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T20:28:46.259Z Has data issue: false hasContentIssue false

Insights into vase-shaped microfossil diversity and Neoproterozoic biostratigraphy in light of recent Brazilian discoveries

Published online by Cambridge University Press:  25 March 2019

L. Morais
Affiliation:
Postdoctoral Researcher, Geochemistry and Geotectonics Program, Institute of Geosciences, Universidade de São Paulo – USP, Rua do Lago, 562, Cidade Universitaria, CEP: 05508-080, São Paulo, Brazil Postdoctoral Researcher, Departament of Geophysics, Institute of Astronomy, Geophysics and Atmospheric Sciences, Universidade de São Paulo, Rua do Matão, 1226, Cidade Universitaria, CEP: 05508-900, São Paulo, Brazil
D.J.G. Lahr
Affiliation:
Department of Zoology, Institute of Biosciences, Universidade de São Paulo – USP, Rua do Matão, travessa 14, 101, Cidade Universitária, CEP: 05508-090, São Paulo, Brazil
I.D. Rudnitzki
Affiliation:
Postdoctoral Researcher, Departament of Geophysics, Institute of Astronomy, Geophysics and Atmospheric Sciences, Universidade de São Paulo, Rua do Matão, 1226, Cidade Universitaria, CEP: 05508-900, São Paulo, Brazil Departament of Geology, Universidade Federal de Ouro Preto - DEGEO/UFOP. Morro do Cruzeiro, s/n – Bauxita, CEP: 35400-000, Ouro Preto, Brazil
B.T. Freitas
Affiliation:
Geology Laboratory, School of Technology, Universidade de Campinas - UNICAMP, Rua Paschoal Marmo, 1888, Jardim Nova Italia, CEP: 13484-332, Limeira, Brazil
G.R. Romero
Affiliation:
Postdoctoral researcher at the Geology and Geochemistry program, Institute of Geoscience, Universidade Federal do Pará, Rua – UFPA, Augusto Correa, s/n, CEP: 66075-110, Belém, PA, Brazil
S.M. Porter
Affiliation:
Department of Earth Sciences, University of California, Santa Barbara, Santa Barbara, California 93106, USA
A.H. Knoll
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
T.R. Fairchild
Affiliation:
Department of Sedimentary and Environmental Geology, Institute of Geosciences, Universidade de São Paulo – USP, Rua do Lago, 562, Cidade Universitária, CEP: 05508-080, São Paulo, Brazil

Abstract

Vase-shaped microfossils (VSMs) occur in dolostone clasts within conglomerates, breccias, and diamictites of the Neoproterozoic Urucum Formation, Jacadigo Group, southwest Brazil. Although their taphonomic history is distinct from those of other VSM assemblages, morphometric comparison of Urucum fossils with five others described previously from North America and Europe show that two of the Urucum species—the long-necked Limeta lageniformis Morais, Fairchild, and Lahr in Morais et al., 2017 and the funnel-necked Palaeoamphora urucumense Morais et al., 2017—occur in the Kwagunt and Callison Lake assemblages, as does Pakupaku kabin Riedman, Porter, and Calver, 2017 recently described from the Togari Group, Tasmania. Obelix rootsii (Cohen, Irvine, and Strauss, 2017) new combination, previously known only from the Callison Lake Formation, is documented here from the Kwagunt Formation. In addition, Trigonocyrillium horodyskii (Bloeser, 1985) and Bonniea dacruchares Porter, Meisterfeld, and Knoll, 2003, first described from the Kwagunt assemblage, have now been found in the Urucum Formation. In light of this survey, 16 of the 18 validly described VSM species are now known to occur in the Kwagunt Formation and 13 in the Callison Lake Formation, with 12 of them shared by both formations. The fact that the Urucum VSM assemblage exhibits six of seven species in common with the Kwagunt Formation—L. lageniformis, P. urucumense, Cycliocyrillium simplex Porter, Meisterfeld, and Knoll, 2003, C. torquata Porter, Meisterfeld, and Knoll, 2003, B. dacruchares Porter, Meisterfeld, and Knoll, 2003, and T. horodyskii (Bloeser, 1985)—and all but the last of these in common with the Callison Lake Formation supports correlation of these three assemblages and indicates that the source of the fossiliferous clasts within the Urucum Formation may well have been a now-vanished late Tonian carbonate platform.

UUID: http://zoobank.org/ac0becd6-29ff-4491-80fa-0291730fba65

Type
Articles
Copyright
Copyright © 2019, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, F.F.M., 1945, Geologia do Sudoeste Mato-Grossense: Boletim da Divisão de Geologia e Mineralogia, DNPM, Boletim 116, 118 p.Google Scholar
Almeida, F.F.M., 1964, Glaciação eocambriana em Mato Grosso: Boletim da Divisão de Geologia e Mineralogia, Departamento Nacional de Produção Mineral, v. 117, p. 111.Google Scholar
Anderson, R.P., Fairchild, I.J., Tosca, N.J., and Knoll, A.H., 2013, Microstructures in metasedimentary rocks from the Neoproterozoic Bonahaven Formation, Scotland: Microconcretions, impact spherules, or microfossils?: Precambrian Research, v. 233, p. 5972.Google Scholar
Angerer, T., Hagemann, S.G., Walde, D., Halverson, G.P., and Boyce, A.J., 2016, Multiple metal sources in the glaciomarine facies of the Neoproterozoic Jacadigo iron formation in the “Santa Cruz deposit”, Corumbá, Brazil: Precambrian Research, v. 275, p. 369393.Google Scholar
Barbosa, O., 1949, Contribuição à geologia da região Brasil-Bolivia: Mineração e Metalurgia, v. 13, p. 271278.Google Scholar
Binda, P.L., and Bokhari, M.M., 1980, Chitinozoanlike microfossils in a late Precambrian dolostone from Saudi Arabia: Geology, v. 8, p. 7071.Google Scholar
Bloeser, B., 1979, Melanocyrillium—new acritarch genus from Kwagunt Formation (late Precambrain) Chuar Group, Grand Canyon Supergroup, Arizona (abstract): American Association of Petroleum Geologists Bulletin, v. 63, p. 420421.Google Scholar
Bloeser, B., 1980, Structurally complex microfossils from shales of the late Precambrian Kwagunt Formation (Walcott Member, Chuar Group) of the eastern Grand Canyon, Arizona [Unpublished M.S. thesis]: Los Angeles, University of California, 188 pp.Google Scholar
Bloeser, B., 1985, Melanocyrillium, a new genus of structurally complex late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona: Journal of Paleontology, v. 59, p. 741765.Google Scholar
Bloeser, B., Schopf, J.W., Horodyski, R.J., and Breed, W.J., 1977, Chitinozoans from the late Precambrian Chuar Group of the Grand Canyon, Arizona: Science, v. 195, p. 676679.Google Scholar
Boggiani, P.C., and Alvarenga, C.D., 2004, Faixa Paraguai, in Mantesso-Neto, V., Bartorelli, A., Carneiro, C.D.R., and Brito-Neves, B.D., eds., Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Flávio Marques de Almeida: São Paulo, Beca, p. 113120.Google Scholar
Bosak, T., Lahr, D.J.G., Pruss, S.B., Macdonald, F.A., Dalton, L., and Matys, E., 2011, Agglutinated tests in post-Sturtian cap carbonates of Namibia and Mongolia: Earth and Planetary Science Letters, v. 308, p. 2940.Google Scholar
Cohen, P.A., and Macdonald, F.A., 2015, The Proterozoic record of eukaryotes: Paleobiology, v. 41, p. 610632.Google Scholar
Cohen, P.A., and Reidman, L.A., 2018, It's a protist-eat-protist world: Recalcitrance, predation, and evolution in the Tonian–Cryogenian ocean: Emerging Topics in Life Sciences, July 26, p. 18.Google Scholar
Cohen, P.A., Irvine, S.W., and Strauss, J.V., 2017, Vase-shaped microfossils from the Tonian Callison Lake Formation of Yukon, Canada: Taxonomy, taphonomy and stratigraphic palaeobiology: Palaeontology, v. 60, p. 683701.Google Scholar
Cordani, U.G., Teixeira, W., Tassinari, C.C., Coutinho, J.M., and Ruiz, A.S., 2010, The Rio Apa Craton in Mato Grosso do Sul (Brazil) and northern Paraguay: Geochronological evolution, correlations and tectonic implications for Rodinia and Gondwana: American Journal of Science, v. 310, p. 9811023.Google Scholar
Dehler, C.M., 2014, Advances in Neoproterozoic biostratigraphy spark new correlations and insight in evolution of life: Geology, v. 42, p. 731732.Google Scholar
Dehler, C.M., Elrick, M., Karlstrom, K.E., Smith, G.A., Crossey, L.J., and Timmons, J.M., 2001, Neoproterozoic Chuar Group (~800–742 Ma), Grand Canyon: A record of cyclic marine deposition during global cooling and supercontinent rifting: Sedimentary Geology, v. 141, p. 465499.Google Scholar
Dehler, C., Gehrels, G., Porter, S., Heizler, M., Karlstrom, K., Cox, G., Crossey, L., and Timmons, M., 2017, Synthesis of the 780–740 Ma Chuar, Uinta Mountain, and Pahrump (ChUMP) groups, western USA: Implications for Laurentia-wide cratonic marine basins: Geological Society of America Bulletin, v. 129, p. 607624.Google Scholar
Dorr, J.V.N., 1945, Manganese and iron deposits of Morro do Urucum, Mato Grosso, Brazil: Bulletin of the United States Geological Survey 946A, 47 p.Google Scholar
Dorr, J.V.N., 1973, Iron-formation in South America: Economic Geology, v. 68, p. 10051022.Google Scholar
Ewetz, C.E., 1933, Einige neue Fossilfunde in der Visingsöformation: Geologiska Föreningen i Stockholm Förhandlingar (GFF), v. 55, p. 506518.Google Scholar
Fairchild, T.R., Barbour, A.P., and Haralyi, N.L., 1978, Microfossils in the “Eopaleozoic” Jacadigo Group at Urucum, Mato Grosso, Southwest Brazil: Boletim Instituto de Geosiências Universidade São Paulo, v. 9, p. 7478.Google Scholar
Folk, R.L., 1987, Detection of organic matter in thin-sections of carbonate rocks using a white card: Sedimentary Geology, v. 54, p. 193200.Google Scholar
Frei, R., Dossing, L.N., Gaucher, C., Boggiani, P.C., Frei, K.M., Árting, T.B., Crowe, S.A., and Freitas, B.T., 2017, Extensive oxidative weathering in the aftermath of a late Neoproterozoic glaciation–Evidence from trace element and chromium isotope records in the Urucum district (Jacadigo Group) and Puga iron formations (Mato Grosso do Sul, Brazil): Gondwana Research, v. 49, p. 120.Google Scholar
Freitas, B.T., Warren, L.V., Boggiani, P.C., De Almeida, R.P., and Piacentini, T., 2011, Tectono-sedimentary evolution of the Neoproterozoic BIF-bearing Jacadigo Group, SW-Brazil: Sedimentary Geology, v. 238, p. 4870.Google Scholar
Green, J.W., Knoll, A.H., and Swett, K., 1988, Microfossils from oolites and pisolites of the upper Proterozoic Eleonore Bay Group, central east Greenland: Journal of Paleontology, v. 62, p. 835852.Google Scholar
Hasui, Y., and Almeida, F.D., 1970, Geocronologia do centro-oeste brasileiro: Boletim da Sociedade Brasilerira de Gelogia, v. 19, p. 526 [in Portuguese].Google Scholar
Horodyski, R.J., 1993, Paleontology of Proterozoic shales and mudstones: Examples from the Belt Supergroup, Chuar Group and Pahrump Group, western USA: Precambrian Research, v. 61, p. 241278.Google Scholar
Karlstrom, K.E., Bowring, S.A., Dehler, C.M., Knoll, A.H., Porter, S.M. et al. , 2000, Chuar Group of the Grand Canyon: Record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma: Geology, v. 28, p. 619622.Google Scholar
Knoll, A.H., 1982, Microfossil-based biostratigraphy of the Precambrian Hecla Hoek sequence, Nordaustlandet, Svalbard: Geological Magazine, v. 119, p. 269279.Google Scholar
Knoll, A.H., 2003, Biomineralization and evolutionary history: Reviews in Mineralogy and Geochemistry, v. 54, no. 1, p. 329356.Google Scholar
Knoll, A.H., and Calder, S., 1983, Microbiotas of the late Precambrian Ryssö Formation, Nordaustlandet, Svalbard: Palaeontology, v. 26, p. 467496.Google Scholar
Knoll, A.H., and Vidal, G., 1980, Late Proterozoic vase-shaped microfossils from the Visingsö Formation, Sweden: Geologiska Föreningen I Stockholm Förhandlingar, v. 102, p. 207211.Google Scholar
Knoll, A.H., Swett, K., and Burkhardt, E., 1989, Paleoenvironmental distribution of microfossils and stromatolites in the upper Proterozoic Backlundtoppen Formation, Spitsbergen: Journal of Paleontology, v. 63, p. 129145.Google Scholar
Knoll, A.H., Swett, K., and Mark, J., 1991, Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: The Draken Conglomerate Formation, Spitsbergen: Journal of Paleontology, v. 65, p. 531570.Google Scholar
Knoll, A.H., Fairchild, I.J., and Swett, K., 1993, Calcified microbes in Neoproterozoic carbonates: Implications for our understanding of the Proterozoic/Cambrian transition: Palaios, v. 8, no. 6, p. 512525.Google Scholar
Kraskov, L.N., 1985, Nakhodka problematichnikh organizmov v otlozheniykh chatkaragaikoii sviti (Talasskii khrebet): Akademiya Nauk, SSSR, Sibirskoe otdelenie, Institut geologii i geofiziki, Trudy, v. 632, p. 149152.Google Scholar
Kraskov, L.N., and Yankaouskas, T.V., 1989, Microfossils of faunal origin, in Yankaouskas, T.V., ed., Mikrofossilii dokembriia SSSR: Leningrad, Nauka, p. 148151.Google Scholar
Lahr, D.J.G., Bosak, T., Lara, E., and Mitchell, E.A.D., 2015, The Phanerozoic diversification of silica-cycling testate amoebae and its possible links to changes in terrestrial ecosystems: PeerJ, v. 3, p. e1234.Google Scholar
Macdonald, F.A., Halverson, G.P., Strauss, J.V., Smith, E.F., Cox, G., Sperling, E.A., and Roots, C.F., 2010, Early Neoproterozoic Basin Formation in Yukon, Canada: Implications for the make-up and break-up of Rodinia: Geoscience Canada, v. 39, p. 77100.Google Scholar
Martí Mus, M., 2001, Paleobiology and taphonomy of early problematic fossils [Ph.D. dissertation]: Uppsala, Sweden, Uppsala University, 158 p.Google Scholar
Martí Mus, M., and Moczydłowska, M., 2000, Internal morphology and taphonomic history of the Neoproterozoic vase-shaped microfossils from the Visings Group, Sweden: Norsk Geologisk Tidsskrift, v. 80, p. 213228.Google Scholar
Moczydłowska, M., Pease, V., Willman, S., Wickström, L., and Agić, H., 2017, A Tonian age for the Visingsö Group in Sweden constrained by detrital zircon dating and biochronology: Implications for evolutionary events: Geological Magazine, p. 115, doi:10.1017/S0016756817000085.Google Scholar
Morais, L., Fairchild, T.R., Lahr, D.J., Rudnitzki, I.D., Schopf, J.W., Garcia, A.K., Kudryavtsev, A.B., and Romero, G.R., 2017, Carbonaceous and siliceous Neoproterozoic vase-shaped microfossils (Urucum Formation, Brazil) and the question of early protistan biomineralization: Journal of Paleontology, v. 91, p. 393406.Google Scholar
O'Connor, E.A., and Walde, D.H.G., 1986, Recognition of an Eocambrian orogenic cycle in SW Brazil and SE Bolivia: Zentralblatt für Geologie und Paläontologie, v. 9, p. 14411456.Google Scholar
Piacentini, T., Vasconcelos, P.M., and Farley, K.A., 2013, 40Ar/39Ar constraints on the age and thermal history of the Urucum Neoproterozoic banded iron-formation, Brazil: Precambrian Research, v. 248, p. 4862.Google Scholar
Porter, S.M., and Knoll, A.H., 2000, Testate amoebae in the Neoproterozoic Era: Evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon: Paleobiology, v. 26, p. 360385.Google Scholar
Porter, S.M., Meisterfeld, R., and Knoll, A.H., 2003, Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A classification guided by modern testate amoebae: Journal of Paleontology, v. 77, p. 409429.Google Scholar
Redes, L.A., Sousa, M.Z.A., Ruiz, A.S., Lafon, J.M., 2015, Petrogenesis and U-Pb and Sm-Nd geochronology of the Taquaral granite: Record of an Orosirian continental magmatic arc in the region of Corumba – MS: Brazilian Journal of Geology, v. 45, p. 431451.Google Scholar
Riedman, L.A., Porter, S.M., and Calver, C.R., 2017, Vase-shaped microfossil biostratigraphy with new data from Tasmania, Svalbard, Greenland, Sweden and the Yukon: Precambrian Research, v. 319, p. 1936, doi:10.1016/j.precamres.2017.09.019.Google Scholar
Rooney, A.D., Strauss, J.V., Brandon, A.D., and Macdonald, F.A., 2015, A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations: Geology, v. 43, p. 459462.Google Scholar
Rooney, A.D., Austermann, J., Smith, E.F., Li, Y., Selby, D., Dehler, C.M., Schmitz, M.D., Karlstrom, K.E., and Macdonald, F.A., 2017, Coupled Re-Os and U-Pb geochronology of the Tonian Chuar Group, Grand Canyon: Geological Society of America Bulletin, v. 130, p. 10851098.Google Scholar
Saito, Y., Tiba, T., and Matsubara, S., 1988, Precambrian and Cambrian cherts in northwestern Tasmania: Bulletin of the National Science Museum, v. 14, p. 5970.Google Scholar
Schopf, J.W., 1992, Evolution of the Proterozoic biosphere: Benchmarks, tempo, and mode, in Schopf, J.W., and Klein, C., eds., The Proterozoic Biosphere, a Multidisciplinary Study: Cambridge, Cambridge University Press, p. 583600.Google Scholar
Sergeev, V.N., and Schopf, J.W., 2010, Taxonomy, paleoecology and biostratigraphy of the late Neoproterozoic Chichkan microbiota of South Kazakhstan: The marine biosphere on the eve of metazoan radiation: Journal of Paleontology, v. 84, p. 363401.Google Scholar
Strauss, J.V., Rooney, A.D., Macdonald, F.A., Brandon, A.D., and Knoll, A.H., 2014, 740 Ma vase-shaped microfossils from Yukon, Canada: Implications for Neoproterozoic chronology and biostratigraphy: Geology, v. 42, p. 659662.Google Scholar
Strauss, J.V., Macdonald, F.A., Halverson, G.P., Tosca, N.J., Schrag, D.P., Knoll, A.H., 2015, Stratigraphic evolution of the Neoproterozoic Callison Lake Formation: Linking the break-up of Rodinia to the Islay carbon isotope excursion: American Journal of Science, v. 315, p. 881944.Google Scholar
Tucker, M.E., and Wright, V.P., 1990, Carbonate Sedimentology: Oxford, John Wiley & Sons, 251 p.Google Scholar
Turner, N.J., Black, L.P., and Kamperman, M., 1998, Dating of Neoproterozoic and Cambrian orogenies in Tasmania: Australian Journal of Earth Sciences, v. 45, p. 789806.Google Scholar
Urban, H., Stribrny, B., and Lippolt, H.J., 1992, Iron and manganese deposits of the Urucum district, Mato Grosso do Sul, Brazil: Economic Geology, v. 87, p. 13751392.Google Scholar
Vidal, G., 1979, Acritarchs from the upper Proterozoic and lower Cambrian of East Greenland: Grønlands Geologiske Undersøgelse, v. 134, p. 155.Google Scholar
Viehmann, S., Bau, M., Bühn, B., Dantas, E.L., Andrade, F.R., and Walde, D.H., 2016, Geochemical characterisation of Neoproterozoic marine habitats: Evidence from trace elements and Nd isotopes in the Urucum iron and manganese formations, Brazil: Precambrian Research, v. 282, p. 7496.Google Scholar
Xiao, S., Shen, B., Tang, Q., Kaufman, A.J., Yuan, X., Li, J., and Qian, M., 2014, Biostratigraphic and chemostratigraphic constraints on the age of early Neoproterozoic carbonate successions in North China: Precambrian Research, v. 246, p. 208225.Google Scholar