Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T23:31:10.516Z Has data issue: false hasContentIssue false

The influence of Trypanites in the diagenesis of Devonian stromatoporoids

Published online by Cambridge University Press:  14 July 2015

S. George Pemberton
Affiliation:
Department of Geology, University of Alberta, Edmonton T6G 2E3, Canada
Brian Jones
Affiliation:
Department of Geology, University of Alberta, Edmonton T6G 2E3, Canada
Gregory Edgecombe
Affiliation:
Department of Geology, University of Alberta, Edmonton T6G 2E3, Canada

Abstract

Stromatoporoids from the Late Devonian (early Frasnian) Waterways Formation near Fort McMurray, Alberta, contain well preserved Trypanites Mägdefrau. The stromatoporoid heads are formed of an initial growth of Clathrocoilona inconstans Stearn that is encased by a second stage growth of Trupetostroma papulosum Stearn. These two stages were separated by a period of no growth and erosion. The first two generations of boring penetrated the skeleton of C. inconstans while the third generation borings penetrated both C. inconstans and T. papulosum. The borings in the stromatoporoids are filled with light colored micrite, dark colored micrite, skeletal fragments, dolomite, non-ferroan calcite, and ferroan calcite. Analysis of the borings, the growth stages of the stromatoporoids, the boring fill, and the orientation of the geopetal fabrics indicates that the stromatoporoids were subjected to repeated cycles of growth-boring-filling and reorientation. This complex interaction of biologic and physical reworking had a profound influence on the diagenetic transformation of the stromatoporoid heads. This example clearly illustrates the role that biogenic agents can play in the production of diagenetic fabrics of hard carbonate substrates.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aller, R. C. 1980. Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average micro environment. Geochimica et Cosmochimica Acta, 44:19551966.CrossRefGoogle Scholar
Aller, R. C. 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying waters, p. 53102. In McCall, P. L. and Tavesz, M. J. S. (eds.), Animal-Sediment Relations. Plenum Press, New York.CrossRefGoogle Scholar
Aller, R. C. 1984. The importance of relict burrow structures and burrow irrigation in controlling sedimentary solute distributions. Geochimica et Cosmochimica Acta, 48:19291934.CrossRefGoogle Scholar
Aller, R. C., Yingst, J. Y., and Ullman, W. J. 1983. Comparative biogeochemistry of water in intertidal Onuphis (polychaete) and Upogebia (Crustacea) burrows: temporal patterns and causes. Journal of Marine Research, 41:571604.CrossRefGoogle Scholar
Beales, F. W. 1953. Dolomitic mottling in Palliser (Devonian) Limestone, Banff and Jasper National Parks, Alberta. Journal of Sedimentary Petrology, 37:22812293.Google Scholar
Bromley, R. G. 1970. Borings as trace fossils and Entobia cretacea Portlock, as an example, p. 4990. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. Seel House Press, Liverpool.Google Scholar
Bromley, R. G. 1972. On some ichnotaxa in hard substrates, with a redefinition of Trypanites Magdefrau. Paläontologische Zeitschrift, 46:9398.CrossRefGoogle Scholar
Bromley, R. G. 1975. Trace fossils at omission surfaces, p. 399428. In Frey, R. W. (ed.), The Study of Trace Fossils. Springer-Verlag, New York.CrossRefGoogle Scholar
Bromley, R. G., and D'Alessandro, A. 1983. Bioerosion in the Pleistocene of southern Italy: ichnogenera Caulostrepsis and Maeandropolydora. Rivista Italiana di Paleontologia, 89:283309.Google Scholar
Bromley, R. G., and Ekdale, A. A. 1984. Trace fossil preservation in flint in the European chalk. Journal of Paleontology, 58:298311.Google Scholar
Bromley, R. G., Schultz, M. G., and Peake, N. B. 1975. Paramoudras: giant flints, long burrows and the early diagenesis of chalks. Biologiske Skrifter Danske Videnskabernes Selskab, 20:131.Google Scholar
Brown, B. J., and Farrow, G. E. 1978. Recent dolomitic concretions of crustacean burrow origin in Loch Sunart, west coast of Scotland. Journal of Sedimentary Petrology, 48:825834.Google Scholar
Byers, C. W., and Stasko, L. E. 1978. Trace fossils and sedimentologic interpretation: McGregor Member of Plattville Formation (Ordovician) of Wisconsin. Journal of Sedimentary Petrology, 48:13031310.Google Scholar
Cameron, B. 1967. New name for Palaeosabella prisca (McCoy), a Devonian worm-boring and its preserved probable borer. Journal of Paleontology, 43:189192.Google Scholar
Cameron, B. 1969. Paleozoic shell-boring annelids and their trace fossils. American Zoologist, 9:689703.CrossRefGoogle Scholar
Chafetz, H. S., and Butler, J. C. 1980. Petrology of recent caliche pisolites, spherulites, and speleothem deposits from central Texas. Sedimentology, 27:497518.CrossRefGoogle Scholar
Chiplonkar, G. W., and Ghare, M. A. 1977. Serpulid and barnacle borings on South Indian Cretaceous fossils from Trichinopoly District, Tamil Nadu. Biovigyanam, 3:193204.Google Scholar
Cuffey, R. J. 1977. Mid-Ordovician bryozoan reefs in western Newfoundland. Geological Society of America, Abstracts with Programs, 9:253.Google Scholar
Ekdale, A. A., Bromley, R. G., and Pemberton, S. G. 1984. Ichnology: the use of trace fossils in sedimentology and stratigraphy. Society of Economic Paleontologists and Mineralogists Short Course 15, 317 p.Google Scholar
Elias, R. J. 1980. Borings in solitary rugose corals of the Selkirk Member, Red River Formation (late Middle or Upper Ordovician), southern Manitoba. Canadian Journal of Earth Science, 17:272277.CrossRefGoogle Scholar
Elias, R. J. 1982. Paleoecology and biostratinomy of solitary rugose corals in the Stony Mountain Formation (Upper Ordovician), Stony Mountain, Manitoba. Canadian Journal of Earth Science, 19:15821598.CrossRefGoogle Scholar
Elias, R. J. 1986. Symbiotic relationships between worms and solitary rugose corals in the Late Ordovician. Paleobiology, 12:3245.CrossRefGoogle Scholar
Fischbuch, N. R. 1968. Stratigraphy, Devonian Swan Hills reef complexes of central Alberta. Bulletin of Canadian Petroleum Geology, 16:446587.Google Scholar
Ghare, M. A. 1982. Borings on belemnoid rostra from Utatur Group of Upper Cretaceous rocks of Trichinopoly District, Tamil Nadu. Journal of the Geological Society of India, 23:129135.Google Scholar
Glazek, J., Marcinowski, R., and Wierzbowski, A. 1971. Lower Cenomanian trace fossils and transgressive deposits in the Cracow Uplands. Acta Geologica Polonica, 21:433448.Google Scholar
Hagenow, K. F. von. 1840. Monographie der Rügenschen Kreideversteinerungen II. Abth. Radiarien und Annulaten. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde, 1840:631672.Google Scholar
Havard, C., and Oldershaw, A. E. 1976. Early diagenesis in back-reef sedimentary cycles, Snipe Lake reef complex, Alberta. Bulletin of Canadian Petroleum Geology, 24:2769.Google Scholar
James, N. P., Kobluk, D. R., and Pemberton, S. G. 1977. The oldest macroborers: Lower Cambrian of Labrador. Science, 197:980983.CrossRefGoogle ScholarPubMed
Jones, B., Lockhart, E. B., and Squair, C. 1984. Phreatic and vadose cements in the Tertiary Bluff Formation of Grand Cayman Island, British West Indies. Bulletin of Canadian Petroleum Geology, 32:382397.Google Scholar
Kapp, U.S. 1975. Paleoecology of Middle Ordovician stromatoporoid mounds in Vermont. Lethaia, 8:195207.CrossRefGoogle Scholar
Kelly, S. R. A., and Bromley, R. G. 1984. Ichnological nomenclature of clavate borings. Palaeontology, 27:793807.Google Scholar
Kershaw, S. 1980. Cavities and cryptic faunas beneath non-reef stromatoporoids. Lethaia, 13:327338.CrossRefGoogle Scholar
Kobluk, D. R., James, N. P., and Pemberton, S. G. 1978. Initial diversification of macroboring ichnofossils and exploitation of the macroboring niche in the lower Paleozoic. Paleobiology, 4:163170.CrossRefGoogle Scholar
Kobluk, D. R., and Nemcsok, S. 1982. The macroboring ichnofossil Trypanites in colonies of the Middle Ordovician bryozoan Prasopora: population behaviour and reaction to environmental influences. Canadian Journal of Earth Sciences, 19:679688.CrossRefGoogle Scholar
Kobluk, D. R., Pemberton, S. G., Karolyi, M., and Risk, M. J. 1977. The Silurian-Devonian disconformity in southern Ontario. Bulletin of Canadian Petroleum Geology, 25:11571186.Google Scholar
Land, L. S. 1973a. Holocene meteoric dolomitization of Pleistocene limestones, north Jamaica. Sedimentology, 20:411424.CrossRefGoogle Scholar
Land, L. S. 1973b. Contemporaneous dolomitization of middle Pleistocene reefs by meteoric water, north Jamaica. Bulletin of Marine Science, 23:6492.Google Scholar
Mägdefrau, K. 1932. Über einige Bohrgänge aus dem Unteren Muschelkalk von Jena. Paläontologische Zeitschrift, 14:150160.CrossRefGoogle Scholar
Mägdefrau, K. 1937. Lebensspuren fossiler “Bohr”-Organismen. Beiträge zur naturkundlichen Forschung in Südwestdeutschland, 2:5467.Google Scholar
Morrow, D. W. 1978. Dolomitization of lower Paleozoic burrow-fillings. Journal of Sedimentary Petrology, 48:295306.Google Scholar
Müller, G. 1968. Bohr-Röhren von unbekannten Anneliden und anderen Organismen in unterdevonischen Brachiopodenklappen aus der Eifel und dem Siegerland (Rheinisches Schiefergebirge). Unpubl. Ph.D. dissertation, University of Köln, Köln, 121 p.Google Scholar
Narbonne, G. M. 1984. Trace fossils in Upper Silurian tidal flat to basin slope carbonates of Arctic, Canada. Journal of Paleontology, 58:398415.Google Scholar
Newell, G. 1970. A symbiotic relationship between Lingula and the coral Heliolites in the Silurian, p. 335344. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. Seel House Press, Liverpool.Google Scholar
Nield, E. W. 1984. The boring of Silurian stromatoporoids—towards an understanding of larval behaviour in the Trypanites organism. Palaeogeography, Palaeoclimatology, Palaeoecology, 48:229243.CrossRefGoogle Scholar
Nygaard, E. 1983. Bathichnus and its significance in the trace fossil association of Upper Cretaceous chalk, Mors, Denmark. Danmarks Geologiske Undersøgelse Arbog, 1982:107137.Google Scholar
Palmer, T. 1982. Cambrian to Cretaceous changes in hardground communities. Lethaia, 15:309323.CrossRefGoogle Scholar
Pemberton, S. G., Kobluk, D. R., Yeo, R. K., and Risk, M. J. 1980. The boring Trypanites at the Silurian-Devonian disconformity in southern Ontario. Journal of Paleontology, 54:12581266.Google Scholar
Pickerill, R. K., Fillion, D., and Harland, T. L. 1984. Middle Ordovician trace fossils in carbonates of the Trenton Group between Montreal and Quebec City, St. Lawrence Lowland, eastern Canada. Journal of Paleontology, 58:416439.Google Scholar
Sheehan, D. M., and Schiefelbein, D. R. J. 1984. The trace fossil Thalassinoides from the Upper Ordovician of the eastern Great Basin: deep burrowing in the early Paleozoic. Journal of Paleontology, 58:440447.Google Scholar
Shourd, M. L., and Levin, H. L. 1976. Chondrites in the Upper Plattin Subgroup (Middle Ordovician) of eastern Missouri. Journal of Paleontology, 50:260268.Google Scholar
Stearn, C. W. 1962. Stromatoporoid fauna of the Waterways Formation (Devonian) of northeastern Alberta. Geological Survey of Canada, Bulletin 92, 23 p.Google Scholar
Stearn, C. W. 1980. Classification of the Paleozoic stromatoporoids. Journal of Paleontology, 54:881902.Google Scholar
Stephenson, L. W. 1952. Larger invertebrate fossils of the Woodbine Formation (Cenomanian) of Texas. United States Geological Survey Professional Paper 242, 226 p.Google Scholar