Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T14:43:06.490Z Has data issue: false hasContentIssue false

The ichnotaxonomy of vertically oriented, bivalve-generated equilibrichnia

Published online by Cambridge University Press:  20 May 2016

John-Paul Zonneveld
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, T6G 2E3, Canada,
Murray K. Gingras
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, T6G 2E3, Canada,

Abstract

Bivalves have pursued an infaunal lifestyle since early in their history. Trace fossils that have been attributed to the infaunal activity of bivalves include Hillichnus, Lockeia (=Pelecypodichnus), Lophoctenium, Protovirgularia, Ptychoplasma, Siphonichnus and Scalichnus. Re-evaluation of the ichnogenera Siphonichnus and Scalichnus supports consolidation into a single ichnogenus, Siphonichnus, which has taxonomic precedence.

Siphonichnus, as redefined herein, presently includes four ichnospecies. Siphonichnus eccaensis Stanistreet et al. is an unlined vertical tube characterized by concave downward laminae penetrated by a single central shaft and is interpreted to reflect downward burrowing in response to net erosion during the life span of the animal. Siphonichnus phiale (Hanken et al., 2001) is characterized by concave upwards laminae and reflects equilibrichnial behavior by the tracemaker. Siphonichnus lepusaures n. isp. is characterized by concave upwards laminae with a pair of vertically oriented, unlined tubes at the top and is interpreted as the dwelling trace of a bivalve with paired siphons responding to sediment aggradation. Siphonichnus sursumdeorsum n. isp. is characterized by concave upwards laminae in its basal third and convex upwards laminae in its upper third and is interpreted as the dwelling trace of a bivalve exhibiting equilibrichnial behavior in a dynamic depositional setting. Consolidation of these ichnotaxa into a single ichnogenus simplifies the ichnotaxonomy and provides a means of assessing the sedimentological significance of bivalve-generated dwelling/equilibrium/escape structures.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angulo, S. and Buatois, L. A. 2012. Ichnology of a Late Devonian–Early Carboniferous low-energy seaway: The Bakken Formation of subsurface Saskatchewan, Canada: Assessing paleoenvironmental controls and biotic responses. Palaeogeography, Palaeoclimatology, Palaeoecology, 315:4660.Google Scholar
Bender, K. and Davies, W. R. 1984. The effect of feeding by Yoldia limatula on bioturbation. Ophelia, 23:91100.Google Scholar
Bromley, R. G., Uchman, A., and Gregory, M. R. 2003. Hillichnus lobosensis igen. et isp. nov., a complex trace fossil produced by tellinacean bivalves, Paleocene, Monterey, California. Palaeogeography, Palaeoclimatology, Palaeoecology, 192:157186.Google Scholar
Carmona, N. B., Buatois, L. A., Mángano, M. G., and Bromley, R. G. 2008. Ichnology of the lower Miocene Chenque Formation, Patagonia, Argentina; animal-substrate interactions and the modern evolutionary fauna. Ameghiniana, 45:93122.Google Scholar
Carmona, N. B., Buatois, L. A., Ponce, J. J., and Mángano, M. G. 2009. Ichnology and sedimentology of a tidal-influenced delta, Lower Miocene Chenque Formation, Patagonia, Argentina: Trace fossil distribution and response to environmental stresses. Palaeogeography, Palaeoclimatology, Palaeoecology, 273:7586.Google Scholar
Checa, A. G. and Cadée, G. C. 1997. Hydraulic burrowing in the bivalve Myaarenaria Linnaeus (Myoidea) and associated ligamental adaptations. Journal of Molluscan Studies, 63:157171.Google Scholar
Ekdale, A. A. and Bromley, R. G. 2001. A day and a night in the life of a cleft-foot clam: Protovirgularia-Lockeia-Lophoctenium. Lethaia, 34:119124.Google Scholar
Fenton, C. L. and Fenton, M. A. 1937. Burrows and trails from Pennsylvanian rocks of Texas. American Midland Naturalist, 18:10791084.Google Scholar
Fernández, D. E., Pazos, P. J., and Aguirre-Urreta, M. B. 2010. Protovirgularia dichotoma–Protovirgularia rugosa: An example of a compound trace fossil from the Lower Cretaceous (Agrio Formation) of the Neuquén Basin, Argentina. Ichnos, 17:4047.Google Scholar
Fouch, T. D. and Dean, W. E. 1982. Lacustrine and associated depositional environments, p. 87114. InScholle, P.A. and Spearing, D.(eds.), Sandstone Depositional Environments. American Association of Petroleum Geologists, Tulsa.Google Scholar
Frey, R. W. and Howard, J. D. 1981. Conichnus and Schaubcylindrichnus: Redefined trace fossils from the Upper Cretaceous of the western interior. Journal of Paleontology, 55:800804.Google Scholar
Gibert, J. M. de and Ekdale, A. A. 1999. Trace fossil assemblages reflecting stressed environments in the Middle Jurassic Carmel Seaway of central Utah. Journal of Paleontology, 73:711720.Google Scholar
Gingras, M. K., Armitage, I. A., Pemberton, S. G., and Clifton, H. E. 2007. Pleistocene walrus herds in the Olympic Peninsula area: Trace fossil evidence of predation by hydraulic jetting. Palaios, 22:539545.CrossRefGoogle Scholar
Gingras, M. K. and MacEachern, J. A. 2011. Tidal ichnology of shallow-water clastic settings, p. 5778. InDavis, R. A. Jr. Dalrymple, R. W.(eds.), Principles of Tidal Sedimentology. Springer, Berlin.Google Scholar
Hanken, N.-M., Bromley, R. G., and Thomsen, E. 2001. Trace fossils of the bivalve Panopea faujasi, Pliocene, Rhodes, Greece. Ichnos, 8:117130.Google Scholar
Hitchcock, E. 1862. Supplement to the ichnology of New England. Proceedings of the American Academy of Arts and Sciences, 6:8588.Google Scholar
International Commission on Zoological Nomenclature. 2000. International Code of Zoological Nomenclature (fourth edition). Online edition, http://www.iczn.org/code.Google Scholar
James, U. P. 1879. Description of new species of fossils and remarks on some others, from the Lower and Upper Silurian rocks of Ohio. The Paleontologist, 3:1724.Google Scholar
Kondo, Y. 1987. Burrowing depth of infaunal bivalves—observation of living species and its relation to shell morphology. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 148:306323.Google Scholar
Kranz, P. M. 1974. The anastrophic burial of bivalves and its paleoecological significance. The Journal of Geology, 82:237265.CrossRefGoogle Scholar
Mason, T. R. and Christie, A. D. M. 1986. Palaeoenvironmentla significance of ichnogenus Diplocraterion Torell from the Permian Vryheid Formation of the Karoo Supergroup, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 52:249265.Google Scholar
Mason, T. R., Stanistreet, I. G., and Tavener-Smith, R. 1983. Spiral trace fossils from the Permian Ecca Group of Zululand. Lethaia, 16:241247.Google Scholar
M'Coy, F. 1850. On some genera and species of Silurian Radiata in the collection of the University of Cambridge. Annals and Magazine of Natural History, Series 2, 6:270290.Google Scholar
MacEachern, J. A., Bann, K. L., Bhattacharya, J. P., and Howell, C. D. 2005. Ichnology of deltas: organism responses to the dynamic interplay of rivers, waves, storms and tides, p. 4986. InBhattacharya, J. P. and Goisan, L.(eds.), River Deltas: Concepts, Models and Examples. SEPM Special Publication 83.Google Scholar
MacEachern, J. A., Zaitlin, B. A., and Pemberton, S. G. 1999. A sharp-based sandstone of the Viking Formation, Joffre Field, Alberta, Canada: Criteria for recognition of transgressively incised shoreface complexes. Journal of Sedimentary Research, 69:876892.CrossRefGoogle Scholar
MacGinitie, G. E. and MacGinitie, N. 1999. A Natural History of Marine Animals (second edition). McGraw-Hill Book Company, New York, 523p.Google Scholar
Mángano, M. G., Buatois, L. A., West, R. R., and Maples, C. G. 1998. Contrasting behavioral and feeding strategies recorded by tidal-flat bivalves from the Upper Carboniferous of Eastern Kansas. Palaios, 13:335351.Google Scholar
Maples, C. G. and West, R. R. 1989. Lockeia, not Pelecypodichnus. Journal of Paleontology, 63:694696.Google Scholar
Nara, M. 2003. Preferentially oriented Lockeia siliquaria in the Miocene Tatsukushi Formation, southwestern Japan; paleoecology and sedimentological significance of infaunal suspension-feeding bivalves. Chishitsugaku Zasshi, 109:710721.Google Scholar
Nara, M. and Ikari, Y. 2011. “Deep-sea bivalvian highways”: An ethological interpretation of branched Protovirgularia of the Paleogene Muroto-Hanto Group, southwestern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 305:250255.Google Scholar
Osgood, R. G. 1970. Trace fossils of the Cincinnati area. Palaeontographica Americana, 6:5783.Google Scholar
Pearson, N. J. and Gingras, M. K. 2006. An ichnological and sedimentological facies model for muddy point-bar deposits. Journal of Sedimentary Research, 76:771782.Google Scholar
Pemberton, S. G., Frey, R. W., and Bromley, R. G. 1988. The ichnotaxonomy of Conostichus and other plug-shaped ichnofossils. Canadian Journal of Earth Sciences, 25:866892.CrossRefGoogle Scholar
Pieńkowski, G. and Niedźweidzki, G. 2009. Invertebrate trace fossil assemblages from the Lower Hettangian of Sołtyków, Holy Cross Mountains, Poland. Volumina Jurassica, 6:109131.Google Scholar
Pieńkowski, G. and Uchman, A. 2009. Ptychoplasma conica isp. nov. a new bivalve locomotion trace fossil from the Lower Jurassic (Hettangian) alluvial sediments of Sołtyków, Holy Cross Mountains, Poland. Geological Quarterly, 53:397406.Google Scholar
Reineck, H. E. 1958. Wühlbau-Gefüge in Abhängigkeit von Sediment-Umlagerungen. Senckenbergiana Lethaia, 39:123.Google Scholar
Richter, R. 1850. Aus der thüringische Grauwacke. Deutsche geologische Gesellschaft Zeitschrift, 2:198206.Google Scholar
Ricketts, E. F., Calvin, J., and Hedgepeth, J. W. 1985. Between Pacific Tides (fifth edition) (revised by D.W. Phillips). Stanford University Press, Stanford, California, 652p.CrossRefGoogle Scholar
Rolán, E. 1983. Algunos observaciones sobre Panopea glycimeris (von born, 1778), Mollusca; Bivalvia en la Ria de Vigo. Thalassas, 1:5965.Google Scholar
Savazzi, E. 1990. Shell biomechanics in the bivalve Laternula. Lethaia, 23:93101.Google Scholar
Savrda, C. 2003. Equilibrium responses reflected in a large Conichnus (Upper Cretaceous Eutaw Formation, Alabama). Ichnos, 9:3340.Google Scholar
Schäfer, W. 1962. Aktuo-Paläontologie nach studien in der Nordsee : Frankfurt am Main, Verlag, Waldemar Kramer, 666p.Google Scholar
Seilacher, A. and Seilacher, E. 1994. Bivalvian trace fossils: A lesson from actuopaleontology, CFS, 169:515.Google Scholar
Smith, A. M. and Tavener-Smith, R. 1988. Early Permian giant cross-beds near Nqutu, South Africa interpreted as part of a shoreface ridge. Sedimentary Geology, 57:4158.Google Scholar
Stanistreet, I. G., Le Blanc Smith, G. and Cable, A. B. 1980. Trace fossils as sedimentological and palaeoenvironmental indices in the Ecca Group (Lower Permian) of the Transvaal. Transactions of the Geological Society of South Africa, 83:333344.Google Scholar
Taylor, A. M. and Gawthorpe, R. L. 1993. Application of sequence stratigraphy and trace fossil analysis to reservoir description: Examples from the Jurassic of the North Sea, p. 317355. InParker, R. J.(ed.), Petroleum Geology of Northwest Europe: Proceedings of the Fourth Conference, Geological Society of London, London.Google Scholar
Thayer, C. W. and Steele-Petrovic, H. M. 1975. Burrowing of the lingulide brachiopod Glottidia pyramidata: Its ecologic and palaeoecologic significance. Lethaia, 8:209221.Google Scholar
Weimer, R. J., Howard, J. D., and Lindsay, D. R. 1982. Tidal flats and associated tidal channels, p. 191245. InScholle, P.A. and Spearing, D.(eds.), Sandstone Depositional Environments. American Association of Petroleum Geologists, Tulsa.Google Scholar
Zonneveld, J.-P., Gingras, M. K., and Pemberton, S. G. 2001. Depositional framework and trace fossil assemblages in a mixed siliciclastic-carbonate marginal marine depositional system, Middle Triassic, NE British Columbia. Palaeogeography, Palaeoclimatology, Palaeoecology, 166:249276.Google Scholar
Zonneveld, J.-P., Gingras, M. K., Beatty, T. W., Bottjer, D. J., Chaplin, J. R., Greene, S. E., Hyodo, T., Martindale, R. C., Mata, S. A., McHugh, L. P., Pemberton, S. G., and Schoengut, J. A. 2012. Mixed carbonate and siliciclastic systems, p. 807836. InKnaust, D. and Bromley, R. G.(eds.), Trace Fossils as Indicators of Sedimentary Environments. Elsevier.Google Scholar
Zonneveld, J.-P. and Pemberton, S. G. 2003. Ichnotaxonomy and behavioural implications of lingulide-derived trace fossils from the Lower and Middle Triassic of Western Canada. Ichnos, 10:2539.Google Scholar