Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T20:03:45.900Z Has data issue: false hasContentIssue false

Ichnology of an Upper Carboniferous fluvio-estuarine paleovalley: The Tonganoxie Sandstone, Buildex Quarry, Eastern Kansas, USA

Published online by Cambridge University Press:  20 May 2016

Luis A. Buatois
Affiliation:
Kansas Geological Survey, 1930 Constant Avenue, Campus West; The University of Kansas, Lawrence 66047
M. Gabriela Mangano
Affiliation:
Kansas Geological Survey, 1930 Constant Avenue, Campus West; The University of Kansas, Lawrence 66047
Christopher G. Maples
Affiliation:
Kansas Geological Survey, 1930 Constant Avenue, Campus West; The University of Kansas, Lawrence 66047
William P. Lanier
Affiliation:
Department of Earth Sciences, Emporia State University, Emporia KS 66801 ([email protected]; [email protected])

Abstract

Tidal rhythmites of the Tonganoxie Sandstone Member (Stranger Formation, Douglas Group) at Buildex Quarry, eastern Kansas, contain a relatively diverse ichnofauna. The assemblage includes arthropod locomotion (Dendroidichnites irregulare, Diplichnites gouldi types A and B, Diplopodichnus biformis, Kouphichnium isp., Mirandaichnium famatinense, and Stiaria intermedia), resting (Tonganoxichnus buildexensis) and feeding traces (Stiallia pilosa, Tonganoxichnus ottawensis); grazing traces (Gordia indianaensis, Helminthoidichnites tenuis, Helminthopsis hieroglyphica); feeding structures (Circulichnis montanus, Treptichnus bifurcus, Treptichnus pollardi, irregular networks), fish traces (Undichna britannica, Undichna simplicitas), tetrapod trackways, and root traces. The taxonomy of some of these ichnotaxa is briefly reviewed and emended diagnoses for Gordia indianaensis and Helminthoidichnites tenuis are proposed. Additionally, the combined name Dendroidichnites irregulare is proposed for nested chevron trackways. Traces previously regarded as produced by isopods are reinterpreted as myriapod trackways (D. gouldi type B). Trackways formerly interpreted as limulid crawling and swimming traces are assigned herein to Kouphichnium isp and Dendroidichnites irregulare, respectively.

Taphonomic analysis suggests that most grazing and feeding traces were formed before the arthropod trackways and resting traces. Grazing/feeding traces were formed in a soft, probably submerged substrate. Conversely, the majority of trackways and resting traces probably were produced subaerially in a firmer, dewatered and desiccated sediment.

The Buildex Quarry ichnofauna records the activity of a terrestrial and freshwater biota. The presence of this assemblage in tidal rhythmites is consistent with deposition on tidal flats in the most proximal zone of the inner estuary, between the maximum landward limit of tidal currents and the salinity limit further towards the sea.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, O. 1935. Vorzeitliche Lebensspuren. Jena, Verlag von Gustav Fischer. 644 p.Google Scholar
Aceñolaza, F. G. 1978. Trazas fósiles de la Formación Patquía en el Bordo Atravesado, Sierra de Famatina, La Rioja. Acta Geológica Lilloana, 15:1929.Google Scholar
Aceñolaza, F. G., and Buatois, L. A. 1991. Trazas fósiles del Paleozoico superior continental argentino. Ameghiniana, 28:89108.Google Scholar
Aceñolaza, F. G., and Buatois, L. A. 1993. Nonmarine perigondwanic trace fossils from the Late Paleozoic of Argentina. Ichnos, 2:183203.CrossRefGoogle Scholar
Allen, G. P. 1991. Sedimentary processes and facies in the Gironde estuary: a model for macrotidal estuarine systems, p. 219226. In Smith, D. G., Reinson, G. E., Zaitlin, B. A., and Rahmani, R. A. (eds.), Clastic Tidal Sedimentology: Canadian Society of Petroleum Geologists Memoir, 16.Google Scholar
Anderson, A. 1970. An analysis of supposed fish trails from interglacial sediments in the Dwyka Series, near Vryheid, Natal. Proceedings of the Second Gondwana Symposium, 1970:637645.Google Scholar
Anderson, A. 1976. Fish trails from the Early Permian of South Africa. Palaeontology, 19:397409.Google Scholar
Anderson, A. 1981. The Umfolozia arthropod trackways in the Permian Dwyka and Ecca Series of South Africa. Journal of Paleontology, 55:84108.Google Scholar
Archer, A. W. 1993. Reappraisal of Pennsylvanian trace-fossil assemblages in the Eastern Interior Coal Basin, U.S.A., p. 5-1–5-14. In Archer, A. W., Feldman, H. R., and Lanier, W. P. (eds.), Incised Paleovalley of the Douglas Group in northeastern Kansas. Field Guide and Related Contributions. Kansas Geological Survey Open-File Report, 93-24.Google Scholar
Archer, A. W., Calder, J. H., Gibling, M. R., Naylor, R. D., Reid, D. R., and Wightman, W. G. 1995. Invertebrate trace fossils and agglutinated foraminifera as indicators of marine influence within the classic Carboniferous section at Joggins, Nova Scotia, Canada. Canadian Journal of Earth Sciences, 32:20272039.Google Scholar
Archer, A. W., and Feldman, H. R. 1995. Incised valleys and estuarine facies of the Douglas Group (Virgilian): Implications for similar Pennsylvanian sequences in the U.S. Mid-Continent, p. 119140. In Hyne, N. J. (ed.), Sequence Stratigraphy of the Mid-Continent. Tulsa Geological Society.Google Scholar
Archer, A. W., Feldman, H. R., Kvale, E. P., and Lanier, W. P. 1994b. Comparison of drier- to wetter-interval estuarine foor facies in the Eastern and Western Interior coal basins, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 106:171185.CrossRefGoogle Scholar
Archer, A. W., Lanier, W. P., and Feldman, H. R. 1994a. Stratigraphy and depositional history within incised-paleovalley fills and related facies, Douglas Group (Missourian/Virgilian; Upper Carboniferous) of Kansas, U.S.A., p. 175190. In Boyd, R., Zaitlin, B. A., and Dalrymple, R. (eds.), Incised valley systems: origin and sedimentary sequences. SEPM Special Publication, 51.Google Scholar
Archer, A. W., and Maples, C. G. 1984. Trace-fossil distribution across a marine-to-nonmarine gradient in the Pennsylvanian of southwestern Indiana. Journal of Paleontology, 58:448466.Google Scholar
Bajard, J. 1966. Figures et structures sédimentaires dans le zone intertidale de la partie orientale de la Baie du Mont-Saint-Michel. Revue de Géographie physique et de Géologie Dynamique, 8:39111.Google Scholar
Bandel, K. 1967. Isopod and limulid marks and trails in Tonganoxie Sandstone (Upper Pennsylvanian) of Kansas. The University of Kansas, Paleontological Contributions, 19:110.Google Scholar
Barnes, R. D. 1980. Invertebrate Zoology. Saunders College, Philadelphia, 1089 p.Google Scholar
Benton, M. J. 1982. Trace fossils from Lower Palaeozoic ocean-floor sediments of the Southern Upland of Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 73:6787.CrossRefGoogle Scholar
Braddy, S. J. 1995. A new arthropod trackway and associated invertebrate ichnofauna from the Lower Permian Hueco Formation of the Robledo Mountains, Southern New Mexico, p. 101105. In Lucas, S. G. and Heckert, A. B. (eds.), Early Permian footprints and facies. New Mexico Museum of Natural History and Science Bulletin, 6.Google Scholar
Bradshaw, M. 1981. Paleoenvironmental interpretations and systematics of Devonian trace fossils from the Taylor Group (lower Beacon Supergroup), Antarctica. New Zealand Journal of Geology and Geophysics, 24:615652.Google Scholar
Brady, L. F. 1947. Invertebrate tracks from the Coconino Sandstone of northern Arizona. Journal of Paleontology, 21:466472.Google Scholar
Bromley, R. G., and Asgaard, U. 1979. Triassic freshwater ichnocoenoses from Carlsberg Fjord, East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 28:3980.Google Scholar
Buatois, L. A., Jalfin, G., and Aceñolaza, F. G. 1997b. Permian nonmarine invertebrate trace fossils from southern Patagonia, Argentina: Ichnologic signatures of substrate consolidation and colonization sequences. Journal of Paleontology, 71:324336.CrossRefGoogle Scholar
Buatois, L. A., and Mángano, M. G. 1993a. Trace fossils from a Carboniferous turbiditic lake: Implications for the recognition of additional non-marine ichnofacies. Ichnos, 2:237258.CrossRefGoogle Scholar
Buatois, L. A., and Mángano, M. G. 1993b. The ichnotaxonomic status of Plangtichnus and Treptichnus . Ichnos, 2:217224.Google Scholar
Buatois, L. A., and Mángano, M. G. 1994. Pistas de peces en el Carbonífero de la cuenca Paganzo (Argentina): Su significado estratigráfico y paleoambiental. Ameghiniana, 31:3340.Google Scholar
Buatois, L. A., and Mángano, M. G. 1995. The paleoenvironmental and paleoecological significance of the lacustrine Mermia ichnofacies: an archetypical subaqueous nonmarine trace fossil assemblage. Ichnos, 4:151161.CrossRefGoogle Scholar
Buatois, L. A., and Mángano, M. G. Maples, C. G., and Lanier, W. P. 1997a. The paradox of nonmarine ichnofaunas in tidal rhythmites: Integrating sedimentologic and ichnologic data from the late Carboniferous of eastern Kansas, USA. Palaios, 12:467481.CrossRefGoogle Scholar
Buatois, L. A., and Mángano, M. G. Maples, C. G., and Lanier, W. P. 1997c. Taxonomic reassessment of the ichnogenus Beaconichnus and additional examples from the Carboniferous of Kansas, U.S.A. Ichnos, 5.Google Scholar
Buatois, L. A., and Mángano, M. G. Maples, C. G., and Lanier, W. P. Wu, X., and Zhang, G. 1995. Vagorichnus, a new ichnogenus for feeding burrow systems and its occurrence as discrete and compound ichnotaxa in Jurassic lacustrine turbidites of Central China. Ichnos, 3:265272.Google Scholar
Buatois, L. A., and Mángano, M. G. Maples, C. G., and Lanier, W. P. 1996b. Trace fossils from Jurassic lacustrine turbidites of the Anyao Formation (Central China) and their environmental and evolutionary significance. Ichnos, 4:287303.Google Scholar
Buatois, L. A., and Mángano, M. G. Maples, C. G., and Lanier, W. P., and Sylvester, Z. 1996a. Flysch trace fossils from the Eocene Tarcau Sandstone, Eastern Carpathians, Romania. 30th International Geological Congress, Beijing. Abstract Volume, 2:p, 133.Google Scholar
Caster, K. E. 1938. A restudy of the tracks of Paramphibius . Journal of Paleontology, 12:360.Google Scholar
Caster, K. E. 1944. Limuloid trails from the Upper Triassic (Chinle) of the Petrified Forest National Monument, Arizona. American Journal of Science, 242:7484.CrossRefGoogle Scholar
Crimes, T. P. 1987. Trace fossils and correlation of late Precambrian and Early Cambrian strata. Geological Magazine, 124:97119.Google Scholar
Crimes, T. P. and Anderson, M. M. 1985. Trace fossils from Late Precambrian-Early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications. Journal of Paleontology, 59:310343.Google Scholar
Crimes, T. P., Goldring, R., Homewood, P., Van Stuijvenberg, J., and Winkler, W. 1981. Trace fossil assemblages of deep-sea fan deposits, Gurnigel and Schlieren flysch (Cretaceous-Eocene, Switzerland). Eclogae Geologicae Helvetiae, 74:953995.Google Scholar
Dalrymple, R. W., Makino, Y., and Zaitlin, B. A. 1991. Temporal and spatial patterns of rhythmite deposition on mud flats in the macrotidal Cobequid Bay-Salmon River estuary, Bay of Fundy, Canada, p. 137160. In Smith, D. G., Reinson, G. E., Zaitlin, B. A., and Rahmani, R. A. (eds.), Clastic Tidal Sedimentology: Canadian Society of Petroleum Geologists Memoir, 16.Google Scholar
Dalrymple, R. W., Zaitlin, B. A., and Boyd, R. 1992. Estuarine facies models: Conceptual basis and stratigraphic implications. Journal of Sedimentary Petrology, 62:11301146.CrossRefGoogle Scholar
Dawson, J. W. 1873. Impressions and footprints of aquatic animals and imitative markings on Carboniferous rocks. American Journal of Science and Arts, 105:1624.CrossRefGoogle Scholar
De Gibert, J. M. 1995. Ichnology of the Lower Cretaceous lithographic Limestones of El Montsec (Lleida, Spain). Second International Symposium on Lithographic Limestones, Cuenca, Abstracts:8588.Google Scholar
Demathieu, G., Gand, G., and Toutin-Morin, N. 1992. La palichnofaune des bassins Permiens Provencaux. Geobios, 25:1954.CrossRefGoogle Scholar
Devera, J. A. 1989. Ichnofossil assemblages and associated lithofacies of the Lower Pennsylvanian (Caseyville and Tradewater Formations), southern Illinois, p. 5783. In Cobb, J. C. (coord.), Geology of the Lower Pennsylvanian in Kentucky, Indiana, and Illinois. Illinois Basin Studies, 1.Google Scholar
Dzulyinski, S., and Walton, E. K. 1965. Sedimentary features of flysch and greywackes. Developments in Sedimentology, 7. 274 p.Google Scholar
Eagar, R. M. C., Baines, J. G., Collinson, J. D., Hardy, P. G., Okolo, S. A., and Pollard, J. E. 1985. Trace fossil assemblages and their occurrence in Silesian (Mid-Carboniferous) deltaic sediments of the central Pennine Basin, England, p. 99149. In Curran, H. A. (ed.), Biogenic structures: their use in interpreting depositional environments. Society of Economic Paleontologists and Mineralogists Special Publication, 35. Tulsa.CrossRefGoogle Scholar
Emmons, E. 1844. The Taconic System: Based on Observations in New York, Massachusetts, Maine, Vermont and Rhode Island. Caroll and Cook, Albany, 68 p.Google Scholar
Fedonkin, M. A. 1977. Precambrian-Cambrian ichnocoenoses of the east European platform, p. 183194. In Crimes, T. P., and Harper, J. C. (eds.), Trace Fossils 2. Geological Journal Special Issue, 9. Seel House Press, Liverpool.Google Scholar
Fedonkin, M. A. 1988. Paleoichnology of the Precambrian-Cambrian transition in the Russian Platform and Siberia, p. 12. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace fossils, small shelly fossils and the Precambrian-Cambrian boundary-proceedings. New York State Museum Bulletin, 463. Abstract.Google Scholar
Feldman, H. R., Gibling, M. R., Archer, A. W., Wightman, W. G., and Lanier, W. P. 1995. Stratigraphic architecture of the Tonganoxie Paleovalley Fill (Lower Virgilian) in Northeastern Kansas. American Association of Petroleum Geologists, Bulletin, 79:10191043.Google Scholar
Fillion, D., and Pickerill, R. K. 1984. Systematic ichnology of the Middle Ordovician Trenton Group, St. Lawrence Lowland, eastern Canada. Maritime Sediments and Atlantic Geology, 20:141.Google Scholar
Fillion, D., and Pickerill, R. K. 1990. Ichnology of the Lower Ordovician Bell Island and Wabana Groups of eastern Newfoundland. Palaeontographica Canadiana, 7:1119.Google Scholar
Fischer, W. A. 1978. The habitat of the early vertebrates: trace and body fossil evidence from the Harding Formation (Middle Ordovician), Colorado. Mountain Geologists, 15:126.Google Scholar
Fitch, A. 1850. A historical, topographical and agricultural survey of the County of Washington. Part 2-5. Transactions of the New York Agricultural Society, 9:753944.Google Scholar
Fregenal-Martinez, M. A., Buatois, L. A., and Mangano, M. G. 1995. Invertebrate trace fossils from Las Hoyas fossil site (Serrania de Cuenca, Spain). Paleoenvironmental interpretations. 2nd International Symposium on Lithographic Limestones, Cuenca, Extended Abstracts:6570.Google Scholar
Gevers, T. W., and Twomey, A. 1982. Trace Fossils and their Environment in Devonian (Silurian?) Lower Beacon Strata in the Asgard Range, Victoria Land, Antarctica, p. 639647. In Craddock, C., Loveless, J. K., Vierima, T. L., and Crawford, K. A. (eds), Antarctic Geoscience. University of Wisconsin Press, Madison.Google Scholar
Gevers, T. W., Frakes, L. A., Edwards, L. N., and Marzolf, J. E. 1971. Trace fossils in the Lower Beacon sediments (Devonian), Darwin Mountains, southern Victoria Land, Antarctica. Journal of Paleontology, 45:8194.Google Scholar
Geyer, G., and Uchman, A. 1995. Ichnofossil assemblages from the Nama Group (Neoproterozoic-Lower Cambrian) in Namibia and the Proterozoic-Cambrian boundary problem revisited. Beringeria Special Issue, 2:175202.Google Scholar
Gibling, M. R., Feldman, H. R., Archer, A. W., and Lanier, W. P. 1993. Sedimentology, stratigraphy, and paleoflow patterns of the Tonganoxie Sandstone Member and related strata in northeast Kansas and southwest Missouri, p. 3-1–3-39. In Archer, A. W., Feldman, H. R., and Lanier, W. P. (eds.), Incised Paleovalley of the Douglas Group in northeastern Kansas. Field Guide and Related Contributions. Kansas Geological Survey Open-File Report, 93-24.Google Scholar
Gibson, G. G. 1989. Trace fossils from Late Precambrian Carolina slate belt, south-central North Carolina. Journal of Paleontology, 63:110.CrossRefGoogle Scholar
Goldring, R., and Seilacher, A. 1971. Limulid undertracks and their sedimentological implications. Neues Jahrbuch fur Geologie und Paläontologie, Abhandlungen, 137:422442.Google Scholar
Greb, S. F., and Archer, A. W. 1995. Rhythmic sedimentation in a mixed tide and wave deposit, Hazel Patch Sandstone (Pennsylvanian), Eastern Kentucky Coal Field. Journal of Sedimentary Research, B65:96106.Google Scholar
Greb, S. F., and Chesnut, D. R. Jr. 1994. Paleoecology of an Estuarine Sequence in the Breathitt Formation (Pennsylvanian), Central Appalachian Basin. Palaios, 9:388402.Google Scholar
Greiner, H. 1972. Arthropod trace fossils in the Lower Devonian Jacquet River Formation of New Brunswick. Canadian Journal of Earth Sciences, 9:17711777.Google Scholar
Gümbel, C. W. 1879. Geognostische Beschreibung de Fichtelgebirges mit dem Frankenwalde und dem westlichen Vorlande. 3. J. Perthes, Gotha. 698 p.Google Scholar
Guthörl, P. 1934. Die arthropoden aus dem Carbon und Perm des Saar-Nahe-Pfalz-Gebietes. Abhandlungert der Preussischen Geologischen Landesanstalt, N.F. 164.Google Scholar
Han, Y., and Pickerill, R. K. 1995. Taxonomic review of the ichnogenus Helminthopsis Heer 1877 with a statistical analysis of selected ichnospecies. Ichnos, 4:83118.Google Scholar
Häntzschel, W. 1975. Trace fossil and Problematica, p. 1269. In Teichert, C, (ed.), Treatise on Invertebrate Paleontology, Part W, Miscellanea, Supplement 1. Geological Society of America and University of Kansas Press, 269 p.Google Scholar
Hardy, P. G. 1970. New xiphosurid trails from the Upper Carboniferous of northern England. Palaeontology, 13:188190.Google Scholar
Heer, O. 1877. Florafossilis Helvetiae. Die vorweltliche flora der Schweiz. J. Wurster and Co., Zurich, 182 p.Google Scholar
Higgs, R. 1988. Fish trails in the Upper Carboniferous of south-west England. Palaeontology 31:255272.Google Scholar
Hofmann, H. J., Cecile, M. P., and Lane, L. S. 1994. New occurrences of Oldhamia and other trace fossils in the Cambrian of the Yukon and Ellesmere Island, arctic Canada. Canadian Journal of Earth Sciences, 31:767782.Google Scholar
Hofmann, H. J., and Patel, I. M. 1989. Trace fossils from the type ‘Etcheminian Series’ (Lower Cambrian Ratcliffe Brook Formation), Saint John area, New Brunswick, Canada. Geological Magazine, 126:139157.CrossRefGoogle Scholar
Holub, V., and Kozur, H. 1981. Arthropodenfahrten aus dem Rotliegend der CSSR. Geologie und Palaontologie Mittielungen, Innsbruck. 11:95148.Google Scholar
Hudson, J. D. 1990. Salinity from faunal analysis and geochemistry, p. 406410. In Briggs, D. E. G., and Crowther, P. R. (eds.), Palaeobiology, a synthesis. Blackwell Scientific Publications, London.Google Scholar
Johnson, E. W., Briggs, D. E. G., Suthren, R. J., Wright, J. L., and Tunncliff, S. P. 1994. Non-marine arthropod traces from the subaerial Ordovician Borrowdale Volcanic Group, English Lake District. Geological Magazine, 131:395406.Google Scholar
Kozur, H. W., and Lemone, D. V. 1995. New terrestrial arthropod trackways from the Abo Member (Sterlitamakian, late Sakmarian, late Wolfcampian) of the Shalem Colony section, Robledo Mountains, New Mexico, p. 107113. In Lucas, S. G. and Heckert, A. B. (eds.), Early Permian footprints and facies. New Mexico Museum of Natural History and Science Bulletin, 6.Google Scholar
Kramer, J. M., Erickson, B. R., Lockley, M. G., Hunt, A. P., and Braddy, S. J. 1995. Pelycosaur predation in the Permian: Evidence from Laoporus trackways from the Coconino Sandstone with a description of a new species of Permichnium, p. 245249. In Lucas, S. G. and Heckert, A. B. (eds.), Early Permian footprints and facies. New Mexico Museum of Natural History and Science Bulletin, 6.Google Scholar
Ksiazkiewicz, M. 1968. O niektórych problematykach z flissu Karpat Polskich (Czesc): Polskiego Towarzystwa Geologicznego W. Krakowie, 38:317.Google Scholar
Ksiazkiewicz, M. 1977. Trace fossils in the flysch of the Polish Carpathians. Paleontologica Polonica, 36:1200.Google Scholar
Lanier, W. P. 1993. Bedform sedimentology of the Lonestar Spillway and Buidex Quarry stops, p. 4-1–4-10. In Archer, A. W., Feldman, H. R., and Lanier, W. P. (eds.), Incised Paleovalley of the Douglas Group in northeastern Kansas. Field Guide and Related Contributions. Kansas Geological Survey Open-File Report, 93-24.Google Scholar
Lanier, W. P., Feldman, H. P., and Archer, A. W. 1993. Tidal sedimentation from a fluvial to estuarine transition, Douglas Group, Missourian-Virgilian, Kansas. Journal of Sedimentary Petrology, 63:860873.Google Scholar
Linck, O. 1949. Leben-Spuren aus dem Schilfsandstein (Mittl. Keuper km 2) NW-Württembergs und ihre Bedeutung für die Bildungsgeschichte der Stufe. Verein für vaterländische Naturkunde in Württemberg, 97–101:1100.Google Scholar
Lins, T. W. 1950. Origin and environment of the Tonganoxie Sandstone in northeastern Kansas. Geological Survey of Kansas Bulletin, 86:105140.Google Scholar
MacNaughton, R. B., and Pickerill, R. K. 1995. Invertebrate ichnology of the nonmarine Lepreau Formation (Triassic), southern New Brunswick, eastern Canada. Journal of Paleontology, 69:160171.CrossRefGoogle Scholar
Maillard, G. 1887. Considérations sur les fossiles décrits comme Algues. Société Paléontologique de la Suisse, Mémoire, 14:140.Google Scholar
Malz, H. 1964. Kouphichnium walchi, die Geschichte einer Fährte und ihres Tieres. Natur und Museum, 94:8097.Google Scholar
Mangano, M. G., Buatois, L. A., and Claps, G. L. 1996a. Grazing trails formed by soldier-fly larvae (Diptera: Stratiomyidae) and their paleoenvironmental and paleoecological implications for the fossil record. Ichnos, 4:163167.CrossRefGoogle Scholar
Mangano, M. G., Buatois, L. A., and Aceñolaza, G. F. 1996b. Trace fossils and sedimentary facies from a Late Cambrian-Early Ordovician tide-dominated shelf (Santa Rosita Formation, northwest Argentina): Implications for ichnofacies models of shallow marine successions. Ichnos, 5:5388.CrossRefGoogle Scholar
Mangano, M. G., Buatois, L. A., Maples, C. G., and Lanier, W. P. 1997. Tonganoxichnus, a new insect trace fossil from the Upper Carboniferous of eastern Kansas, USA. Lethaia, 30:113125.Google Scholar
Manton, S. M. 1977. The Arthropoda. Habits, functional morphology, and evolution. Clarendon Press, Oxford. 527 p.Google Scholar
Maples, C. G., and Archer, A. W. 1987. Redescription of Early Pennsylvanian trace-fossil holotypes from the non-marine Hindostan Whetstone Beds of Indiana. Journal of Paleontology, 61:890897.CrossRefGoogle Scholar
Martino, R. L. 1989. Trace fossils from marginal marine facies of the Kanawa Formation (Middle Pennsylvanian), West Virginia. Journal of Paleontology, 63:389403.CrossRefGoogle Scholar
McCann, T., and Pickerill, R. K. 1988. Flysch trace fossils from the Cretaceous Kodiak Formation of Alaska. Journal of Paleontology, 62:330348.CrossRefGoogle Scholar
M'Coy, F. 1850. A systematic description of the British Palaeozoic fossils in the Geological Museum of the University of Cambridge, p. 1661. In Sedgwick, A., A Synopsis of the Classification of the British Palaeozoic rocks. Parker, London.Google Scholar
Melchor, R. N., Basan, J., and Fernandez, M. A. 1993. Asociación de trazas fésiles de la facies pelítica de la Formación Agua Escondida (Carbonífero Superior?), sureste de Mendoza, Argentina. Primera Reunión Argentina de Icnología, Resumen y Conferencias Invitadas, p. 15. Santa Rosa.Google Scholar
Metz, R. 1987. Recent traces by invertebrates in aquatic nonmarine environments. Bulletin of the New Jersey Academy of Sciences, 32:1924.Google Scholar
Metz, R. 1995. Ichnologic study of the Lockatong Formation (Late Triassic), Newark Basin, southeastern Pennsylvania. Ichnos, 4:4351.Google Scholar
Miller, M. F. 1982. Limulicubichnus: A new ichnogenus of limulid resting traces. Journal of Paleontology, 56:429433.Google Scholar
Miller, M. F., and Knox, L. W. 1985. Biogenic structures and depositional environments of a Lower Pennsylvanian coal-bearing sequence, northern Cumberland Plateau, Tennessee, U.S.A., p. 6797. In Curran, H. E. (ed.), Biogenic structures—Their use in interpreting depositional environments. Society of Economic Paleontologists and Mineralogists, 35.Google Scholar
Miller, M. F., and Smail, S. E. 1997. A semiquantitative method for evaluating bioturbation on bedding planes. Palaios, 12:389394.CrossRefGoogle Scholar
Miller, S. A. 1889. North American geology and palaeontology for the use of amateurs, students and scientists. Western Methodist Book Concern, Cincinnati, Ohio. 664 p.CrossRefGoogle Scholar
Moore, R. C., and McCormick, L. 1969. General features of Crustacea, p. R57R120. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part R, Arthropoda 4. The Geological Society of America, Inc., and The University of Kansas.Google Scholar
Narbonne, G. M., and Aitken, J. D. 1990. Ediacaran fossils from the Sekwi Brook area, Mackenzie mountains, northwestern Canada. Palaeontology, 33:945980.Google Scholar
Nopcsa, F. B. 1923. Die Familien der Reptilien. Fortschritte de Geologie und Paläontologie, 2:1210.Google Scholar
Oppel, A. 1862. Über fhrten im lithographischen Schiefer (Ichnites lithographicus). Museum des Koniglich Bayerischen Staates, Paleontologische Mittheilungen, 2:121125.Google Scholar
Paczesna, J. 1986. Upper Vendian and Lower Cambrian ichnocoenoses of Lublin region. Biuletyn Instytutu Geologicznego, 355. Geology of Poland, 7:3147.Google Scholar
Palij, V. M. 1976. Remains of soft-bodied animals and trace fossils from the Upper Precambrian and Lower Cambrian of Podolia, p. 6376. In Paleontologiya i stratigrafiya verkhnego dokembriya I nizhnego kembriya yugo-zapada Vostochno-Europeiskoi platformy. Naulova Dumka, Viev. (In Ukranian).Google Scholar
Pemberton, S. G., and Wightman, D. M. 1992. Ichnological characteristics of brackish water deposits, p. 141167. In Pemberton, S. G. (ed.), Applications of ichnology to petroleum exploration, a core workshop. Society of Economic Paleontologists and Mineralogists, Core Workshop, 17.Google Scholar
Pickerill, R. K. 1981. Trace fossils in a Lower Palaeozoic submarine canyon sequence—the Siegas Formation of northwestern New Brunswick, Canada. Maritime Sediments and Atlantic Geology, 17:3659.Google Scholar
Pickerill, R. K. 1990. Nonmarine Paleodictyon from the Carboniferous Albert Formation of southern New Brunswick. Atlantic Geology, 26:157163.Google Scholar
Pickerill, R. K. 1992. Carboniferous nonmarine invertebrate ichnocoenoses from southern New Brunswick, eastern Canada. Ichnos, 2:2135.Google Scholar
Pickerill, R. K. 1994. Nomenclature and taxonomy of invertebrate trace fossils, p. 342. In Donovan, S. K. (ed.), The Paleobiology of Trace Fossils. John Wiley and Sons Ltd, Chichester.Google Scholar
Pickerill, R. K., and Brenchley, P. J. 1991. Benthic macrofossils as paleoenvironmental indicators in marine siliciclastic facies. Geoscience Canada, 18:119138.Google Scholar
Pickerill, R. K., Fyffe, L. R., and Forbes, W. H. 1987. Late Ordovician-Early Silurian trace fossils from the Matapedia Group, Tobique River, western New Brunswick, Canada. Maritime Sediments and Atlantic Geology, 23:7788.Google Scholar
Pickerill, R. K., and Keppie, J. D. 1981. Observations on the ichnology of the Meguma Group (?Cambro-Ordovician) of Nova Scotia. Maritime Sediments and Atlantic Geology, 17:130138.Google Scholar
Pickerill, R. K., and Peel, J. S. 1991. Gordia nodosa isp. nov. and other trace fossils from the Cass Fjord Formation (Cambrian) of North Greenland. Gronlands Geologiske Undersogelse, Rapport, 150:1528.Google Scholar
Pollard, J. E., and Walker, E. 1984. Reassessment of sediments and trace fossils from Old Red Sandstone (Lower Devonian) of Dunure, Scotland, described by John Smith (1909). Geobios, 17:567576.Google Scholar
Remane, A., and Schlieper, C. 1971. Biology of brackish water. John Wiley and Sons, New York, 372 p.Google Scholar
Rhoads, D. C. 1975. The paleoecological and environmental significance of trace fossils, p. 147160. In Frey, R. W. (ed.), The Study of Trace Fossils. Springer-Verlag, New York.CrossRefGoogle Scholar
Richter, R. 1941. Marken und Spuren in Hunsrückschiefer. 3. Fährten als Zeugnisse des Lebens auf dem Meeres-Grunde. Senckenbergiana, 23:218260.Google Scholar
Rindsberg, A. K. 1990. Freshwater to marine trace fossils of the Mary Lee Coal zone and overlying strata (Westphalian A), Pottsville Formation of northern Alabama, p. 8295. In Gastaldo, R. A., Demko, T. M., and Liu, Y. (eds.), Carboniferous coastal environments and paleocommunities of the Mary Lee Coal zone, Marion and Walker counties, Alabama. A guidebook for field trip VI, Southeastern Section, Geological Society of America. Tuscaloosa, Alabama. Geological Survey of Alabama.Google Scholar
Rindsberg, A. K. 1994. Ichnology of the Upper Mississippian Hartselle Sandstone of Alabama, with notes on other Carboniferous formations. Geological Survey of Alabama, Bulletin, 158, 107 p.Google Scholar
Romano, M., and Whyte, M. A. 1987. A limulid trace fossil from the Scarborough Formation (Jurassic) of Yorkshire; its occurrence, taxonomy and interpretation. Proceedings of the Yorkshire Geological Society, 46:8595.Google Scholar
Romano, M., and Whyte, M. A. 1990. Selenichnites, a new name for the ichnogenus Selenichnus Romano and Whyte 1987. Proceedings of the Yorkshire Geological Society, 48:221.CrossRefGoogle Scholar
Russell, L. S. 1940. Micrichnus trails from the Paskapoo formation of Alberta. Royal Canadian Institute, Proceedings, 23:6774.Google Scholar
Sanders, D. T. 1959. Sandstones of the Douglas and Pedee Groups in northeastern Kansas. Geological Survey of Kansas Bulletin, 134:125159.Google Scholar
Seilacher, A. 1955. Spuren und Lebensspuren der Trilobiten, p. 373399. In Schindewolf, O. H., and Seilacher, A. (eds.). Beitrage zur Kenntnis des Kambriums in der Salt Range (Pakistan). Akademiee der Wissenschaften und der Literatur zu Mainz, mathematisch-naturwissenschaftliche Klasse, Abhandlungen, 10.Google Scholar
Seilacher, A., and Hemleben, C. 1966. Beitrage zur sedimentation und fossilsfuhrung des Hunsrucksciefers 14. Spurenfauna und Bildungstiefe der Hunsruckschiefer (Unterdevon). Notizblatt des Hessischen Landesamtes fur Bodenforschung zu Wiesbaden, 94:4053.Google Scholar
Seilacher, A., and Seilacher, A. 1994. Bivalvian trace fossils: A lesson from actuopaleontology. Courier Forschunginstitut Senckenberg, 169:515.Google Scholar
Singh, I. B., and Rai, V. 1983. Fauna and biogenic structures in Kro-Tal succession (Vendian-Early Cambrian), Lesser Himalaya: their biostratigraphic and palaeoecological significance. Palaeontological Society of India Journal, 28:6790.Google Scholar
Smith, J. 1909. Upland Fauna of the Old Red Sandstone Formation of Carrick, Ayrshire. Kilwinning, Cross, 60 p.Google Scholar
Swinbanks, D. D., and Murray, J. W. 1981. Biosedimentological zonation of Boundary Bay tidal flats, Fraser River Delta, British Columbia. Sedimentology, 28:201237.Google Scholar
Taylor, A. M., and Goldring, R. 1993. Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150:141148.Google Scholar
Tessier, B., Archer, A. W., Lanier, W. P., and Feldman, H. R. 1995. Comparison of ancient tidal rhythmites (Carboniferous of Kansas and Indiana, USA) with modern analogues (the Bay of Mont-Saint Michel, France), p. 259271. In Flemming, B. W., and Bartholomá, A. (eds.), Tidal signatures in modern and ancient sediments. International Association of Sedimentologists, Special Publication, 24.Google Scholar
Trewin, N. H. 1994. A draft system for the identification and description of arthropod trackways. Palaeontology, 37:811823.Google Scholar
Trewin, N. H., and McNamara, K. J. 1995. Arthropods invade the land: trace fossils and palaeoenvironments of the Tumblagooda Sandstone (?late Silurian) of Kalbarri, Western Australia. Transactions of the Royal Society of Edinburgh: Earth Sciences, 85:177210.Google Scholar
Turek, V. 1989. Fish and amphibian trace fossils from Westphalian sediments of Bohemia. Palaeontology, 32:623643.Google Scholar
Tyler, D. J. 1988. Evidence and significance of limulid instars from trackways in the Bude Formation (Westphalian), south-west England. Proceedings of the Usher Society, 7:7780.Google Scholar
Volk, M. 1961. Protovirgularia nereitarum (Reinhard Richter), eine Lebesspur aus dem Devon Thüringen. Senckenbergiana Lethaea, 42:6975.Google Scholar
Vyalov, O. S. 1971. The rare Mesozoic problematica from the Pamir and the Caucasus. Paleontologicheskiy Sbornik, 7:8593. (In Russian).Google Scholar
Walker, E. F. 1985. Arthropod ichnofauna of the Old Red Sandstone at Dunure and Montrose, Scotland. Transactions Royal Society of Edinburgh, 76:287297.CrossRefGoogle Scholar
Walter, H. 1982. Zur ichnologie der Oberen Hornburger Schichten des östlichen Harzvorlandes. Freiberger Forschungssheft, C 366,S:4563.Google Scholar
Walter, H. 1983. Zur taxonomie, okologie und biostratigraphie der ichnia limnisch-terrestrischer arthropoden des mitteleuropaischen Jungpalaozoikums. Freiberger Forschungssheft, C 382, S:146193.Google Scholar
Walter, M. R., Oehler, J. H., and Oehler, D. Z. 1976. Megascopic algae 1300 million years old from the Belt Supergroup, Montana: A reinterpretation of Walcott's Helminthoidichnites . Journal of Paleontology, 50:872881.Google Scholar
Wetzel, A., and Bromley, R. G. 1996. Re-evaluation of the ichnogenus Helminthopsis—a new look at the type material. Palaeontology. 39:119.Google Scholar
Wightman, D. M., Pemberton, S. G., and Singh, C. 1987. Depositional modelling of the Upper Mannville (Lower Cretaceous), east-central Alberta: implications for the recognition of brackish water deposits, p. 189220. In Tillman, R. W., and Weber, K. J. (eds.), Reservoir Sedimentology. Society of Economic Paleontologists and Mineralogists, Special Publication, 40:189220.Google Scholar
Willard, B. 1935. Chemung tracks and trails from Pennsylvania. Journal of Paleontology, 9:4356.Google Scholar
Zhang, G., Buatois, L. A., Mangano, M. G., and Aceñolaza, F. G. 1995. Trace fossils and sedimentary facies from a Permian playalake complex in western Argentina. First International Congress on Paleolimnology, Abstract Volume, p. 46.Google Scholar