Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T21:58:40.718Z Has data issue: false hasContentIssue false

The genus Steinmanella (Bivalvia, Trigonioida) in the lower member of the Agrio Formation (Lower Cretaceous), Neuquén Basin, Argentina

Published online by Cambridge University Press:  20 May 2016

Dario G. Lazo*
Affiliation:
Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina, CONICET,

Abstract

Myophorellid bivalves (Trigonioida, Myophorellacea) with conspicuously tuberculate shells are abundant in Lower Cretaceous rocks of the Neuquén Basin represented by the Gondwanian genus Steinmanella Crickmay, 1930. Publications concerning Neuquén trigonioids deal only with taxonomy, and until now the sedimentary environments of the Steinmanella bearing facies have not been interpreted. The present study analyzes morphology, taxonomy, stratigraphy, and paleobiology of Steinmanella species collected from five sections of the Lower Member of the Agrio Formation, including the type locality. Two species are differentiated: Steinmanella pehuenmapuensis (Leanza, 1998) from the lower part of the member (Pseudofavrella angulatiformis Zone) and Steinmanella transitoria (Steinmann, 1881) from the middle and upper part of the member (Holcoptychites neuquensis, Hoplitocrioceras gentilii, and Weavericeras vacaensis Zones).

Specimens of both species have been recorded in intermediate to high-energy shoreface and low-energy offshore deposits. The inferred paleoecologic model is that Steinmanella lived semi-infaunally and burrowed on sandy substrates in the shoreface and on muddy substrates in the offshore. Colonization of low-energy subenvironments in the offshore probably occurred during increased sea-floor oxygenation and reduced net sedimentation or brief omission periods.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberhan, M. 1993. Benthic macroinvertebrate associations on a carbonate-clastic ramp in segments of the Early Jurassic back-arc basin of northern Chile (26–29°S). Revista Geológica de Chile, 20:105136.Google Scholar
Aguirre-Urreta, M. B. 1998. The ammonites Karakaschiceras and Neohoploceras (Valanginian Neocomitidae) from the Neuquén Basin, West-Central Argentina. Journal of Paleontology, 72:3959.Google Scholar
Aguirre-Urreta, M. B., and Forte, G. L. Lo 1996. Los depósitos Tithoneocomianos, p. 179229. In Ramos, V. A., Aguirre-Urreta, M. B., Alvarez, P. P., Cegarra, M. I., Cristallini, E. O., Kay, S. M., Forte, G. L., Pereyra, F. X., and Pérez, D. J. (eds.), Geología de la región del Aconcagua. Provincias de San Juan y Mendoza, República Argentina. Dirección Nacional del Servicio Geológico Subsecretaría de Minería de la Nación Anales 24, Buenos Aires.Google Scholar
Aguirre-Urreta, M. B., and Ramos, V. A. 1981. Estratigrafía y paleontología de la Alta cuenca del río Noble, Cordillera Patagónica, provincia de Santa Cruz. Actas del VIII Geológico Argentino, San Luis, 3:101138.Google Scholar
Aguirre-Urreta, M. B., and Rawson, P. F. 1997. The ammonite sequence in the Agrio Formation (Lower Cretaceous), Neuquén Basin, Argentina. Geological Magazine, 134(4):449458.Google Scholar
Aguirre-Urreta, M. B., and Rawson, P. F. 1998. The Early Cretaceous (Valanginian) ammonite Chacantuceras gen. nov.—a link between the Neuquén and Austral basins. Revista de la Asociación Geológica Argentina, 53:354364.Google Scholar
Aguirre-Urreta, M. B., and Rawson, P. F. 1999. Lower Cretaceous ammonites from the Neuquén Basin, Argentina: Viluceras, a new Valanginian subgenus of Olcostephanus. Cretaceous Research, 20:343357.Google Scholar
Aguirre-Urreta, M. B., and Rawson, P. F. 2001a. Lower Cretaceous ammonites from the Neuquén Basin, Argentina: the Hauterivian neocomitid genus Hoplitocrioceras (Giovine, 1950). Cretaceous Research, 22:201218.Google Scholar
Aguirre-Urreta, M. B., and Rawson, P. F. 2001b. Lower Cretaceous ammonites from the Neuquén Basin, Argentina: a Hauterivian Olcostephanus fauna. Cretaceous Research, 22:763778.Google Scholar
Alexander, R. R. 1993. Correlation of shape and habit with sediment grain size for selected species of the bivalve Anadara. Lethaia, 26:153162.Google Scholar
Behrendsen, O. 1892. Zur Geologie des Ostabhanges der argentinischen Cordillere. II. Theil. Zeitschrift der Deutschen geologischen Gesellschaft, 44:142, 4 pls.Google Scholar
Bracaccini, O. I. 1970. Rasgos tectónicos de las acumulaciones mesozoicas en las provincias de Mendoza y Neuquén, República Argentina. Revista de la Asociación Geológica Argentina, 25:275284.Google Scholar
Brinkmann, H.-D. 1994. Facies and sequences of the Agrio Formation (Lower Cretaceous) in the central and southern Neuquén Basin, Argentina. Zentralblatt für Geologie und Palaeontologie, Teil, I (1/2):309317.Google Scholar
Burckhardt, C. 1900. Coupe géologique de la Cordillère entre Las Lajas et Curacautin. Anales del Museo de La Plata, Sección Geológica y Mineralógica, 3:1100, 26 pls.Google Scholar
Burckhardt, C. 1903. Beiträge zur Kenntniss der Jura- und Kreideformation der Cordillere. Palaeontographica, 50(1–3):1144.Google Scholar
Camacho, H. H., and Olivero, E. B. 1985. El género Steinmanella Crickmay, 1930 (Bivalvia, Trigoniidae) en el Cretácico Inferior del sudoeste gondwánico. Anales de la Academia Nacional de Ciencias Exactas, Físicas y Naturales, Buenos Aires, 37:4162.Google Scholar
Canfield, D. E., and Raiswell, R. 1991. Carbonate precipitation and dissolution. Its relevance to fossil preservation, p. 412453. In Allison, P. A. and Briggs, D. E. G. (eds.), Taphonomy: Releasing the Data Locked in the Fossil Record, Volume 9 of Topics in Geobiology. Plenum Press, New York.Google Scholar
Cooper, M. R. 1979. Cretaceous Trigoniidae (Mollusca, Bivalvia) from the Brenton Formation, Knysna. Annals of the South African Museum, 78:4967.Google Scholar
Cooper, M. R. 1991. Lower Cretaceous Trigonioida (Mollusca, Bivalvia) from the Algoa Basin, with a revised classification of the order. Annals of the South African Museum, 100(1):152.Google Scholar
Cox, L. R. 1969a. General features of Bivalvia, p. N3–N129. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. N, Mollusca 6, Bivalvia 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Cox, L. R. 1969b. Superfamily Trigoniacea Lamarck, 1819, p. N471. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. N, Mollusca 6, Bivalvia 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Cox, L. R. 1969c. Family Trigoniidae Lamarck, 1819, p. N476N488. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. N, Mollusca 6, Bivalvia 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Crickmay, C. H. 1930. Fossils from Harrison Lake area, British Columbia. National Museum of Canada Bulletin, 63:3366.Google Scholar
Dall, W. H. 1889. On the hinge of pelecypods and its development, with an attempt toward a better subdivision of the group. American Journal of Science, 38(3):445462.Google Scholar
Damborenea, S. E., Manceñido, M., and Riccardi, A. C. 1979. Estudio paleontológico de la Formación Chachao. Informe Interno YPF, 152 p., 19 pls (unpublished).Google Scholar
Darragh, T. A. 1986. The Cainozoic Trigoniidae of Australia. Alcheringa, 10:134.Google Scholar
Digregorio, R. E., Gulisano, C. A., Pleimling, A. R. Gutierrez, and Minniti, S. A. 1984. Esquema de la evolución geodinámica de la Cuenca Neuquina y sus implicancias paleogeográficas. Actas del IX Congreso Geológico Argentino, San Carlos de Bariloche, 2:147162.Google Scholar
Douvillé, R. 1910. Céphalopodes argentins. Mémoires de la Société Géologique de France, 43, 24 p.Google Scholar
Fleming, C. A. 1964. History of the Bivalve Family Trigoniidae in the South-West Pacific. The Geological Background to an Australian ‘Living Fossil’. Australian Journal of Science, 26(7):196204.Google Scholar
Fürsich, F. T., and Aberhan, M. 1990. Significance of time-averaging for palaeocommunity analysis. Lethaia, 23:143152.Google Scholar
Smith, A. Gilbert, Briden, J. C., and Drewry, G. E. 1973. Phanerozoic world maps. Special Papers in Palaeontology, 12:142.Google Scholar
Goldfuss, G. A. 1826–1844. Petrefacta Germaniae tam ea, quae in museo universitatis regiae Borussicae Friedericiae Wilhelminae Rhenanae servantur quam alia quaecunque in museis Hoeninghusiano Muensteriano aliisque extant, iconibus et descriptionibus illustrata. Abbildungen und Beschreibungen der Petrefacten Deytschlands un der angränzenden Länder unter Mitwirkung des Herrn Grafen Georg zu Münster. Düsseldorf, Arnz & Co, 2:1312.Google Scholar
Gulisano, C. A., and Pleimling, A. R. Gutiérrez 1988. Depósitos eólicos del Miembro Avilé (Formación Agrio, Cretácico Inferior) en el norte del Neuquén, Argentina. Actas de la Segunda Reunión Argentina de Sedimentología, Buenos Aires, 1:120124.Google Scholar
Haupt, O. 1907. Beiträge zur Fauna des oberen Malm und der unteren Kreide in der argentinischen Cordillere. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Beilage-Band, 23:187236, 7–10 pls.Google Scholar
Kelly, S. R. A. 1995a. New Trigonioid bivalves from the Early Jurassic to Earliest Cretaceous of the Antarctic Peninsula region: systematics and Austral Paleobiogeography. Journal of Paleontology, 69:6684.Google Scholar
Kelly, S. R. A. 1995b. New Trigonioid bivalves from the Albian (Early Cretaceous) of Alexander Island, Antarctic Peninsula: systematics, Paleoecology, and Austral Cretaceous Paleobiogeography. Journal of Paleontology, 69:264279.Google Scholar
Kennedy, W. J. 1978. Cretaceous, p. 280322. In McKerrow, W. S. (ed.), The Ecology of Fossils, an Illustrated Guide. MIT Press, Cambridge, Massachusetts.Google Scholar
Kitchin, F. L. 1903. The Jurassic fauna of Cutch. The Lamellibranchiata. Genus Trigonia. Memoirs of the Geological Survey of India, Palaeontologia Indica, 9, 3(2) :1–122.Google Scholar
Kitchin, F. L. 1908. The invertebrate fauna and palaeontological relations of the Uitenhage Series. Annals of the South African Museum, 7:21250.Google Scholar
Kobashayi, T. 1954. Studies on the Jurassic trigonians in Japan, Pt. I, Preliminary notes. Japanese Journal of Geology and Geography, 15(1/2):6180.Google Scholar
Lambert, L. R. 1944. Algunas Trigonias del Neuquén. Revista del Museo de La Plata (Nueva Serie), Paleontología, 2(14):357397, 13 pls.Google Scholar
Lazo, D. G. 2001. Distribución ambiental de trazas fósiles en el Miembro Inferior de la Formacion Agrio, Cretácico de Cuenca Neuquina. Actas de la IV Reunión Argentina de Icnología y II Reunión de Icnología del Mercosur, Tucumán, p. 52.Google Scholar
Leanza, A. F. 1941. Dos nuevas Trigonias del Titoniense de Carrin-Curá, en el territorio del Neuquén. Notas del Museo de La Plata, Paleontología, 6(31):225233, 1 pl.Google Scholar
Leanza, A. F. 1945. Amonites del Jurásico Superior y del Cretácico Inferior de la Sierra Azul, en la parte meridional de la provincia de Mendoza. Anales del Museo de La Plata (Nueva Serie), 1:199.Google Scholar
Leanza, A. F., and Castellaro, H. A. 1955. Algunos fósiles cretácicos de Chile. Revista de la Asociación Geológica Argentina, 10:179211, 4 pls.Google Scholar
Leanza, H. A. 1993. Jurassic and Cretaceous Trigoniid bivalves from West-Central Argentina. Bulletins of American Paleontology, 105(343):195.Google Scholar
Leanza, H. A. 1998. Una nueva especie de Steinmanella Crickmay (Bivalvia, Trigonioida) del Cretácico Inferior de la Cuenca Neuquina, Argentina. Revista Geológica de Chile, 25:5767.Google Scholar
Leanza, H. A., and Zubillaga, J. I. Garate 1987. Fauna de Trigonias (Bivalvia) del Jurásico y Cretácico Inferior de la provincia del Neuquén, Argentina, conservadas en el Museo Juan Olsacher de Zapala, p. 201255. In Volkheimer, W. (ed.), Bioestratigrafía de los Sistemas Regionales del Jurásico y Cretácico de América del Sur. Comité Sudamericano del Jurásico y Cretácico, Mendoza, Argentina.Google Scholar
Leanza, H. A., and Wiedmann, J. 1980. Ammoniten des Valangin und Hauterive (Unterkreide) von Neuquén und Mendoza, Argentinien. Eclogae Geologicae Helvetiae, 73:941981.Google Scholar
Leanza, H. A., and Wiedmann, J. 1992. Nuevos Holcodiscidae (Cephalopoda-Ammonoidea) del Barremiano de la Cuenca Neuquina, Argentina, y su significado estratigráfico. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1992, Heft 1:2438.Google Scholar
Legarreta, L., and Gulisano, C. A. 1989. Análisis estratigráfico secuencial de la Cuenca Neuquina (Triásico Superior-Terciario Inferior), p. 221243. In Chebli, G. A. and Spalletti, L. A. (eds.), Cuencas Sedimentarias Argentinas, Correlación Geológica 6. Universidad Nacional de Tucumán, Tucumán.Google Scholar
de Caminos, R. Levy 1969. Revisión de las Trigonias de la Argentina. Parte V: El grupo de las Pseudoquadratae. Ameghiniana, 6:6568.Google Scholar
Lisson, C. I. 1930. Contribución al conocimiento de algunas trigonias neocómicas del Perú. Boletín de Minas. Industrias y Construcciones, Serie 2, 20:326, 10 pls.Google Scholar
Forte, G. L. Lo 1988. La fauna de trigonias (Mollusca; Bivalvia) del Tithoniano-Neocomiano de la Quebrada Blanca, Alta Cordillera de Mendoza. Actas del V Congreso Geológico Chileno, Santiago de Chile, 2:C277C293.Google Scholar
Newell, N. D., and Boyd, D. W. 1965. Classification of the Bivalvia. American Museum Novitates, 2206, 25 p.Google Scholar
Newell, N. D., and Boyd, D. W. 1975. Parallel evolution in early Trigoniacean bivalves. Bulletin of the American Museum of Natural History, 154(2):53162.Google Scholar
Philippi, R. A. 1899. Los fósiles Secundarios de Chile. Santiago de Chile, 104 p., 42 pls.Google Scholar
Pojeta, J. Jr. 1978. The origin and early taxonomic diversification of pelecypods. Philosophical Transactions of the Royal Society of London B, 284:225246.Google Scholar
Bianchi, R. Reyes 1970. La fauna de trigonias de Aisén. Instituto de Investigaciones Geológicas de Chile Boletín, 26:539.Google Scholar
Bianchi, R. Reyes, and D'Angelo, E. Pérez 1979. Estado actual del conocimiento de la Familia Trigoniidae (Mollusca; Bivalvia) en Chile. Revista Geológica de chile, 8:1364.Google Scholar
Bianchi, R. Reyes, D'Angelo, E. Pérez, and Serey, I. E. 1981. Estudio sistemático y filogenético de las especies sudamericanas del género Steinmanella (Trigoniidae; Bivalvia). Revista Geológica de Chile, 12:2547.Google Scholar
Ryer, T. A. 1991. Lower Cretaceous Avilé Sandstone, Neuquén Basin, Argentina-Exploration model for a Lowstand Clastic Wedge in a Back-Arc Basin. American Association of Petroleum Geologists, Bulletin, 75:665.Google Scholar
Saul, L. R. 1978. The North Pacific Cretaceous trigoniid genus Yaadia. University of California Publications in Geological Sciences, Volume 119, 65 p., 12 pls.Google Scholar
Spalletti, L. A., Poiré, D. G., Pirrie, D., Matheos, S. D., and Doyle, P. 2001. Respuesta sedimentológica a cambios en el nivel de base en una secuencia mixta clástica-carbonática del Cretácico de la Cuenca Neuquina, Argentina. Revista Sociedad Geológica España, 14(1–2):5774.Google Scholar
Stanley, S. M. 1970. Relations of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoir, 125.Google Scholar
Stanley, S. M. 1977. Coadaptation in the Trigoniidae, a remarkable family of burrowing bivalves. Palaeontology, 20:866899.Google Scholar
Steinmann, G. 1881. Zur Kenntniss der Jura- und Kreideformation von Caracoles (Bolivia). Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie, Beilage-Band I, 239301, pls. 9–14.Google Scholar
Steinmann, G. 1882. Die Gruppe der Trigoniae pseudo-quadratae. Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie 1882, Band I, Abhandlungen, 219228, pls. 7–9.Google Scholar
Tashiro, M., and Matsuda, T. 1988. Mode of life in Cretaceous trigonians. Fossils, 45:921. (In Japanese with English abstract)Google Scholar
Taylor, J. D., Kennedy, W. J., and Hall, A. 1969. The shell structure and mineralogy of the Bivalvia. Introduction. Nuculacea-Trigoniacea. Bulletin of the British Museum (Natural History), Zoology Supplement, 3:1125.Google Scholar
Tevesz, M. J. S. 1975. Structure and habits of the ‘living fossil’ pelecypod Neotrigonia. Lethaia, 8:321327.Google Scholar
Uliana, M. A., Dellape, D. A., and Pando, G. A. 1977. Análisis estratigráfico y evaluación del potencial petrolífero de las Formaciones Mulichinco, Chachao y Agrio. Cretácico Inferior de las provincias de Neuquén y Mendoza. Petrotecnia, Enero-Febrero 1977, 3146; Marzo 1977, 25–33.Google Scholar
Vergani, G. D., Tankard, A. J., Belotti, H. J., and Welsink, H. J. 1995. Tectonic Evolution and Paleogeography of the Neuquén Basin, Argentina. In Tankard, A. J., Suárez, R. S., and Welsink, H. J. (eds.), Petroleum Basins of South America. American Association of Petroleum Geologists Memoir, 62:383402.Google Scholar
Villamil, T., Kauffman, E. G., and Leanza, H. A. 1998. Epibiont habitation patterns and their implications for life habits and orientation among trigoniid bivalves. Lethaia, 31:4356.Google Scholar
Walker, K. R., and Diehl, W. W. 1986. The effect of synsedimentary substrate modification on the composition of paleocommunities: paleoecologic sucession revisited. Palaios, 1:6574.Google Scholar
Weaver, C. 1931. Paleontology of the Jurassic and Cretaceous of West Central Argentina. Memoirs of the University of Washington, 1:1595.Google Scholar
Wignall, P. B. 1993. Distinguishing between oxygen and substrate control in fossil benthic assemblages. Journal of the Geological Society of London, 150:193196.Google Scholar
Zavala, C. 2000. New advances in the sequence stratigraphy and sedimentology of the Mulichinco Formation, Neuquén Basin. Boletín de Informaciones Petroleras, Tercera Época, 63:4054.Google Scholar