Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T02:31:42.424Z Has data issue: false hasContentIssue false

First report of a larval shell repair scar on a lingulate brachiopod: evidence of durophagous predation in the Cambrian pelagic realm?

Published online by Cambridge University Press:  14 July 2015

Rebecca L. Freeman
Affiliation:
1Department of Earth and Environmental Science, Tulane University, New Orleans, LA 70118, USA,
James F. Miller
Affiliation:
2Department of Geography, Geology, and Planning, Missouri State University, Springfield, MO 65897, USA,

Abstract

A dorsal valve of an Upper Cambrian lingulate brachiopod exhibits a repair scar on the anterior lateral edge of its larval shell. This species is characterized by an abrupt change in ornamentation from larval to postlarval growth. Shell material secreted in the injured area after the damage occurred exhibits ornamentation that is characteristic of postlarval growth, although equivalent growth exhibits characteristics of the larval stage. A break in the edge of the shell is visible, and the growth lines of the larval and postlarval shell were distorted until the broken area was filled in. Damage to the surface of the shell is interpreted to have been caused by the same event. Modern lingulate brachiopod larvae are planktotrophic and are interpreted to have been so throughout their long geologic history. Therefore, an environmental cause of shell damage seems unlikely and the injuries are interpreted to have been caused by an unknown durophagous predator. This specimen offers evidence that lingulate brachiopod larvae were able to survive shell breakage and repair their shells.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, K. R. 1986. Resistance to and repair of shell breakage induced by durophages in Late Ordovician brachiopods. Journal of Paleontology, 60:273285.Google Scholar
An, T.-X., Zhang, F., Xiang, W., Zhang, Y., Xu, X., Zhang, H., Jiang, D., Yang, C., Lin, L., Cui, Z., and Yang, X. 1983. The conodonts of north China and the adjacent regions. Science Publishing Company, Beijing, 223 p. (In Chinese).Google Scholar
Babcock, L. E. 1993. Trilobite malformations and the fossil record of behavioral asymmetry. Journal of Paleontology, 67:217229.CrossRefGoogle Scholar
Babcock, L. E. 2003. Trilobites in Paleozoic predator-prey systems, and their role in reorganization of Early Paleozoic ecosystems, p. 5592. In Kelley, P. H., Kowalewski, M., and Hansen, T. A. (eds.), Predator-Prey Interactions in the Fossil Record. Kluwer Academic/Plenum Publishers, New York.CrossRefGoogle Scholar
Babcock, L. E. and Robison, R. A. 1988. Taxonomy and paleobiology of some Middle Cambrian Scenella (Cnidaria) and hyolithids (Mollusca) from Western North America. The University of Kansas Palaeontological Contributions Paper, 121:122.Google Scholar
Bengtson, S. 1968. The problematic genus Mobergella from the Lower Cambrian of the Baltic area. Lethaia, 1:325351.Google Scholar
Berkyová, S., Fryda, J., and Lukeš, P. 2007. Unsuccessful predation on Middle Paleozoic plankton: shell injury and anomalies in Devonian dacryocanarid tentaculites. Acta Palaeontologica Polonica, 52:407412.Google Scholar
Boyajian, G. E. and Thayer, C. W. 1995. Clam calamity: a Recent supratidal storm-deposit as an analog for fossil shell beds. PALAIOS, 10:484489.Google Scholar
Brett, C. E. and Walker, S. E. 2002. Predators and predation in Paleozoic marine environments, p. 93118. In Kowalewski, M. and Kelley, P. H. (eds.), The Fossil Record of Predation. The Paleontological Society Papers, 8.Google Scholar
Brock, G. A. and Holmer, L. E. 2004. Early Ordovician lingulate brachiopods from the Emanuel Formation, Canning Basin, Western Australia. Memoirs of the Association of Australasian Palaeontologists, 30:113132.Google Scholar
Bruton, D. L. 2001. A death assemblage of priapulid worms from the Middle Cambrian Burgess Shale. Lethaia, 34:163167.CrossRefGoogle Scholar
Cadée, G. C. 1999. Shell damage and shell repair in the Antarctic limpet Nacella concinna from King George Island. Journal of Sea Research, 41:149161.Google Scholar
Cadée, G. C., Walker, S. E., and Flessa, K. W. 1997. Gastropod shell repair in the intertidal of Bahía la Choya (N. Gulf of California). Palaeogeography, Palaeoclimatology, Palaeoecology, 136:6778.CrossRefGoogle Scholar
Collette, J. H. and Hagadorn, J. W. 2010. Early evolution of phyllocarid arthropods: phylogeny and systematic of Cambrian-Devonian archaeostracans. Journal of Paleontology, 84:795820.Google Scholar
Conway Morris, S. and Bengtson, S. 1994. Cambrian predators: possible evidence from boreholes. Journal of Paleontology, 68:123.CrossRefGoogle Scholar
Conway Morris, S. and Chapman, A. J. 1997. Mobergellans from the Lower Cambrian of Mongolia, Sweden, and the United States: molluscs or opercula of incertae sedis? Journal of Paleontology, 71:968984.Google Scholar
Conway Morris, S. and Robison, R. A. 1988. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. The University of Kansas Paleontological Contributions Paper, 122:148.Google Scholar
Conway Morris, S. and Whittington, H. B. 1979. The animals of the Burgess Shale. Scientific American, 241:122133.Google Scholar
Dall, W. H. 1870. A revision of the Terebratulidae and Lingulidae. American Journal of Conchology, 6:88168.Google Scholar
Evans, K. R. 1992. Marocella: Antarctic specimens of an enigmatic Cambrian animal. Journal of Paleontology, 66:558562.Google Scholar
Freeman, G. and Lundelius, J. W. 1999. Changes in the timing of mantle formation and larval life history traits in linguliform and craniiform brachiopods. Lethaia, 32:197217.Google Scholar
Garstang, W. 1928. Origin and evolution of larval forms. Nature, 122:366.Google Scholar
Geyer, G. 1986. Mittelkambrische mollusken aus Marokko und Spanien. Senckenbergiana Lethaea, 67:55118.Google Scholar
Grassi, B. 1881. Intorno ai chetognati. Reale Istituto Lombardo di Scienze e Lettere, Series 2, 14:199213.Google Scholar
Hansen, B., Bjornsen, P. K., and Hansen, P. J. 1994. The size ratio between planktic predators and their prey. Limnology and Oceanography, 39:395403.Google Scholar
Hickman, C. S. 2001. Evolution and development of gastropod larval shell morphology: experimental evidence for mechanical defense and repair. Evolution and Development, 3:1823.CrossRefGoogle ScholarPubMed
Holmer, L. E. 1989. Middle Ordovician phosphatic inarticulate brachiopods from Västergotland and Dalarna, Sweden. Fossils and Strata, 26:1172.Google Scholar
Hu, S., Steiner, M., Zhu, M., Erdtmann, B.-D., Lu, H., Chen, L., and Weber, B. 2007. Diverse pelagic predators from the Chengjiang Lagerstätte and the establishment of modern-style pelagic ecosystems in the early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254:307316.Google Scholar
King, W. 1846. Remarks on certain genera belonging to the class Palliobranchiata. Annals and Magazine of Natural History, Series 1, 18:2642, 83–94.Google Scholar
Menke, C. T. 1828. Synopsis methodica molluscorum generum omnium et specierum earum quae in Museo Menkeano Adservantur. Pyrmonti, 91 p.Google Scholar
Mergl, M. 1997. Obolid brachiopods with burrowing structures in the Lower Ordovician of Bohemia. Bulletin of the Czech Geological Survey, 72:127139.Google Scholar
Miller, J. F., Evans, K. R., Loch, J. D., Ethington, R. L., Stitt, J. H., Holmer, L. E., and Popov, L. E. 2003. Stratigraphy of the Sauk III interval (Cambrian–Ordovician), Ibex area, western Millard County, Utah and central Texas. Brigham Young University Geology Studies, 47:23118, plus CD-ROM.Google Scholar
Miller, R. H. and Sundberg, F. A. 1984. Boring Late Cambrian organisms. Lethaia, 17:185190.Google Scholar
Paine, R. T. 1963. Ecology of the brachiopod Glottidia pyramidata . Ecological Monographs, 33:187213.CrossRefGoogle Scholar
Peel, J. S. 2003. A problematic cap-shaped metazoan from the Lower Cambrian of Estonia. GFF, 125:157161.Google Scholar
Popov, L. and Gorjansky, V. 1994. First record of Upper Cambrian from the eastern White Sea coast: new evidence from obolids (Brachiopoda). GFF, 116:3135.Google Scholar
Pratt, B. R. 1998. Probable predation on Upper Cambrian trilobites and its relevance for the extinction of soft-bodied Burgess Shale-type organisms. Lethaia, 31:7388.CrossRefGoogle Scholar
Purtilo, D. T. 1978. A Survey of Human Diseases. Addison-Wesley, Menlo Park, California, 453 p.Google Scholar
Rees, M. N. 1986. A fault-controlled trough through a carbonate platform: the Middle Cambrian House Range Embayment. Geological Society of America Bulletin, 97:10541069.Google Scholar
Robson, S. P. and Pratt, B. R. 2007. Predation of late Marjuman (Cambrian) linguliformean brachiopods from the Deadwood Formation of South Dakota, USA. Lethaia, 40:1932.Google Scholar
Savazzi, E. 1986. Burrowing sculptures and life habits in Paleozoic lingulacean brachiopods. Paleobiology, 12:4663.Google Scholar
Schmidt, F. 1888. Über ein neuentdeckte unterkambrische fauna. Memoires de l'Academie Imperiales des Sciences de St. Petersbourg, 7:129.Google Scholar
Seilacher, A. 1973a. Biostratinomy: the sedimentology of biologically standardized particles, p. 159177. In Ginsberg, R. N. (ed.), Evolving Concepts in Sedimentology, Vol. 21. Johns Hopkins Studies in Geology, Baltimore.Google Scholar
Seilacher, A. 1973b. Fabricational noise in adaptive morphology. Systematic Zoology, 22:451465.Google Scholar
Signor, P. W. and Brett, C. E. 1984. The Mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology, 10:229245.Google Scholar
Signor, P. W. and Vermeij, G. J. 1994. The plankton and the benthos: origins and early history of an evolving relationship. Paleobiology, 20:297319.CrossRefGoogle Scholar
Skovsted, C. B., Brock, G. A., Lindström, A., Peel, J. S., Paterson, J. R., and Fuller, M. K. 2007. Early Cambrian record of failed durophagy and shell repair in an epibenthic mollusk. Biology Letters, 3:314317.Google Scholar
Szaniawski, H. 2002. New evidence for the protoconodont origin of chaetognaths. Acta Palaeontologica Polonica, 47:405419.Google Scholar
Terazaki, M. 2000. Feeding of carnivorous zooplankton, chaetognaths in the Pacific, p. 257276. In Handa, N., Tanoue, E., and Hama, T. (eds.), Dynamics and Characterization of Marine Organic Matter. Klewer Academic Press, Dordrecht.CrossRefGoogle Scholar
Ushatinskaya, G. T. 2001. Brachiopods, p. 201216. In Zhuravlev, A. Y. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Vannier, J. and Chen, J.-Y. 2000. The Early Cambrian colonization of pelagic niches exemplified by Isoxys (Arthropoda). Lethaia, 33:295311.CrossRefGoogle Scholar
Vannier, J. and Chen, J.-Y. 2005. Early Cambrian food chain: new evidence from fossil aggregates in the Maotianshan Shale Biota, SW China. PALAIOS, 20:326.CrossRefGoogle Scholar
Vannier, J., Steiner, M., Renvoisé, E., Hu, S.-X., and Casanova, J.-P. 2007. Early Cambrian origin of modern food webs: evidence from predator arrow worms. Proceedings of the Royal Society B, 274:627633.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation. Princeton University Press, Princeton, New Jersey. 527 p.Google Scholar
Waagen, W. 1885. Salt Range fossils, Vol. I, Part 4. Productus limestone fossils, Brachiopoda. Memoirs of the Geological Survey of India, Paleontologia Indica (series 13), facs., 5:729770, pl. 82–86.Google Scholar
Walcott, C. D. 1908. Cambrian geology and paleontology, no. 3-Cambrian Brachiopoda, descriptions of new genera and species. Smithsonian Miscellaneous Collections, 53:53165, pl. 7-12.Google Scholar
Waloszek, D. 2003. The ‘Orsten’ window—a three-dimensionally preserved Upper Cambrian meiofauna and its contribution to our understanding of the evolution of Arthropoda. Paleonontological Research, 7:7188.CrossRefGoogle Scholar
Williams, A. and Holmer, L. E. 1992. Ornamentation and shell structure of acrotretoid brachiopods. Palaeontology, 35:657692.Google Scholar
Yochelson, E. L. and Gil Cid, D. 1984. Re-evaluation of the systematic position of Scenella . Lethaia, 17:331340.CrossRefGoogle Scholar
Zuschin, M., Stachowitsch, M., and Stanton, R. J. 2003. Patterns and processes of shell fragmentation in modern and ancient environments. Earth Science Reviews, 63:3382.Google Scholar