Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T14:34:42.989Z Has data issue: false hasContentIssue false

First Middle Ordovician ostracods from western Avalonia: paleogeographical and paleoenvironmental significance

Published online by Cambridge University Press:  20 May 2016

Ed Landing
Affiliation:
New York State Museum, 222 Madison Avenue, Albany, New York 12230, USA,
Mohibullah Mohibullah
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, UK Department of Geology, University of Balochistan, Quetta, Pakistan
Mark Williams
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, UK

Abstract

Two new species of ostracods, Conchoprimitia cassidula n. sp. and Sorornanopsis avalonensis n. gen. n. sp., represent the first described Middle Ordovician ostracods from western Avalonia. They were recovered as phosphatized carapaces dissolved out of a late early Darriwilian (ca. 467 Ma) limestone boulder from the Triassic Lepreau Formation of New Brunswick, Canada. The ostracods form a low-diversity component of a higher energy, near-shore, shelf marine fauna dominated by the trilobites Neseuretus and Stapleyella and by the conodonts Drepanoistodus and Baltoniodus. The low diversity of this Avalonian ostracod fauna contrasts with more diverse (tens of species), coeval ostracod faunas from Laurentia and Baltica. The association of Darriwilian ostracods and trilobites from New Brunswick demonstrates continuing exchange of open marine, cool water biota between Avalonia, Baltica, and West and North Gondwana that began in the late early Cambrian.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamczak, F. J. 1961. Eridostraca—a new suborder of ostracods and its phylogenetic significance. Acta Palaeontologia Polonica, 6:4764.Google Scholar
Bauer, J. A. 2010. Conodonts and conodont biostratigraphy of the Joins and Oil Creek formations, Arbuckle Mountains, south-central Oklahoma. Oklahoma Geological Survey, Bulletin 150, 44p.Google Scholar
Botting, J. 2002. The role of pyroclastic volcanism in Ordovician diversification. The Geological Society of London, Special Publication, 194:99113.Google Scholar
Br⊘gger, W. C. 1882. Die silurischen Etagen 2 und 3 im Kristianiagebiet und auf Eker, ihre Gliederung, Fossilien, Schichtenstörungen und Kontactmetamorfosen. Universitet-Programm (Christiana), p. 1136.Google Scholar
Currie, K. L. 1983. The geology of the Saint John region. Geological Survey of Canada. Open-File Report 1027.Google Scholar
Dalman, J. W. 1827. Om Palaedener, eller de så kallade Trilobiterna. Kongliga Svenska Vetenskaps-Akademiens Handlingar, 1826 (2):113162, 226–294.Google Scholar
Davidek, K., Landing, E., Bowring, S. A., Westrop, S. R., Rushton, A. W. A., Fortey, R. A., and Adrain, J. M. 1998. New uppermost Cambrian U-Pb date from Avalonian Wales and age of the Cambrian–Ordovician boundary. Geological Magazine, 135:305309.Google Scholar
Fortey, R. A. and Cocks, L. R. M. 1992. The Early Palaeozoic of the North Atlantic region as a test case for the use of fossils in continental reconstruction. Tectonophysics, 206:147158.Google Scholar
Fortey, R. A. and Morris, S. F. 1982. The Ordovician trilobite Neseuretus from Saudi Arabia, and the palaeogeography of the Neseuretus fauna related to Gondwanaland in the earlier Ordovician. Bulletin of the British Museum (Natural History), Geology, 36:6375.Google Scholar
Fortey, R. A. and Owens, R. M. 1987. The Arenig Series in South Wales. Bulletin of the British Museum (Natural History), Geology, 41:69307.Google Scholar
Ghobadi Pour, M., Mohibullah, M., Williams, M., Popov, L. E., and Yu. Tolmacheva, T. 2011. New, early ostracods from the Ordovician (Tremadocian) of Iran: systematic, biogeographical and palaeoecological significance. Alcheringa, 35:517529.Google Scholar
Harris, R. W. 1957. Ostracoda of the Simpson Group. Oklahoma Geological Survey Bulletin 75, 333p.Google Scholar
Harvey, T. H. P., Vélez, M. I., and Butterfield, N. J. 2012. Exceptionally preserved crustaceans from western Canada reveal a cryptic Cambrian radiation. PNAS, 109:15891594.Google Scholar
Hayes, A. O. and Howell, B. F. 1937. Geology of Saint John, New Brunswick. Geological Society of America, Special Paper 5, 168p.Google Scholar
Henningsmoen, G. 1953. Classification of Palaeozoic straight-hinged ostracods. Norsk Geologisk Tidsskrift, 31:185288.Google Scholar
Henningsmoen, G. 1954. Lower Ordovician ostracods from the Oslo Region, Norway. Norsk Geologisk Tidsskrift, 33:4168.Google Scholar
Hessland, I. 1949. Investigations of the Lower Ordovician of the Siljan District, Sweden. I. Lower Ordovician ostracods of the Siljan District, Sweden. Bulletin of the Geological Institution of the University of Upsala, 33:97408.Google Scholar
Hicks, H. 1873. On the Tremadoc rocks in the neighbourhood of St. David's, South Wales, and their fossil contents. Quarterly Journal of the Geological Society of London, 29:3952.CrossRefGoogle Scholar
Isachsen, C. E., Bowring, S. A., Landing, E., and Samson, S. D. 1994. New constraint on the division of Cambrian time. Geology, 22:496498.Google Scholar
Jaanusson, V. 1957. Middle Ordovician ostracodes of central and southern Sweden. Geological Institute of the University of Uppsala, Bulletin, 37:176442.Google Scholar
Keppie, J. D. 1982. The Minas geofracture, p. 263280. InSt. Julien, P. and Béland, J.(eds.), Major structural zones and faults of the northern Appalachians. Geological Association of Canada, Special Paper 24.Google Scholar
Keppie, J. D., Nance, R. D., Murphy, J. B., and Dostal, J. 2003. Tethyan, Mediterranean, and Pacific analogues for the Neoproterozoic–Paleozoic birth and development of peri-Gondwana terrances and their transfer to Laurentia and Laurussia. Tectonophysics, 365:195219.CrossRefGoogle Scholar
Landing, E. 1980. Late Cambrian–Early Ordovician macrofaunas and phosphatic microfaunas, St. John Group, New Brunswick. Journal of Paleontology, 54:752761.Google Scholar
Landing, E. 1996a. Avalon—Insular continent by the latest Precambrian, p. 2764. InNance, R. D. and Thompson, M.(eds.), Avalonian and related peri-Gondwanan terranes of the circum-North Atlantic. Geological Society of America, Special Paper 304.Google Scholar
Landing, E. 1996b. Reconstructing the Avalon continent: Marginal-to-inner platform transition in the Cambrian of Avalonian New Brunswick. Canadian Journal of Earth Sciences, 33:623632.Google Scholar
Landing, E. 2004. Precambrian–Cambrian boundary interval deposition and the marginal platform of the Avalon microcontinent. Journal of Geodynamics, 37:411435.Google Scholar
Landing, E. 2005. Early Paleozoic Avalon–Gondwana unity: an obituary—response to “Palaeontological evidence bearing on global Ordovician–Silurian continental reconstructions ” by Fortey, R. A. and Cocks, L. R. M.Earth-Science Reviews, 69:169175.Google Scholar
Landing, E. 2007a. East Laurentia 2007—a pre-meeting statement, p. 3, 4. InLanding, E.(ed.), Ediacaran–Ordovician of east Laurentia. S. W. Ford Memorial Volume. New York State Museum Bulletin 510.Google Scholar
Landing, E. 2007b. Ediacaran–Ordovician of east Laurentia—geologic setting and controls on deposition along the New York Promontory, p. 524. InLanding, E.(ed.), Ediacaran–Ordovician of east Laurentia—S. W. Ford Memorial Volume. New York State Museum Bulletin 510.Google Scholar
Landing, E. and Fortey, R. A. 2011. Tremadocian (Lower Ordovician) biotas and sea-level changes on the Avalon microcontinent. Journal of Paleontology, 85:680696.Google Scholar
Landing, E. and Westrop, S. R. 1996. Upper Lower Cambrian depositional sequence in Avalonian New Brunswick. Canadian Journal of Earth Sciences, 33:404417.Google Scholar
Landing, E. and Westrop, S. R. 2004. Environmental patterns in the origin and evolution and diversification loci of Early Cambrian skeletalized Metazoa: evidence from the Avalon microcontinent, p. 93105. InLipps, J. H. and Wagoner, B.(eds.), Neoproterozoic–Cambrian Biological Revolutions. Paleontological Society Papers, 10.Google Scholar
Landing, E., Taylor, M. E., and Erdtmann, B.-D. 1978. Correlation of the Cambrian–Ordovician boundary between the Acado-Baltic and North American faunal provinces. Geology, 6:7578.Google Scholar
Landing, E., Bowring, S. A., Fortey, R. A., and Davidek, K. 1997. U-Pb zircon date from Avalonian Cape Breton Island and geochronologic calibration of the Early Ordovician. Canadian Journal of Earth Sciences, 34:724730.Google Scholar
Landing, E., Bowring, S. A., Davidek, K., Rushton, A. W. A., Fortey, R. A., and Wimbledon, W. A. P. 2000. Cambrian–Ordovician boundary age and duration of the lowest Ordovician Tremadoc Series based on U-Pb zircon dates from Avalonian Wales. Geological Magazine, 137:485494.Google Scholar
Landing, E., Westrop, S. R., and Kim, D. H. 2003. First Middle Ordovician biota from southern New Brunswick: stratigraphic and tectonic implications for the evolution of the Avalon continent. Canadian Journal of Earth Sciences, 40:715730.Google Scholar
Landing, E., Johnson, S. C., and Geyer, G. 2008. Faunas and Cambrian volcanism on the Avalonian marginal platform, southern New Brunswick. Journal of Paleontology, 82:884905.Google Scholar
Latreille, P. A. 1802. Histoire naturelle, générale et particulière, des crustacés et des insectes, 3rd ed. Paris, Dufart, 468p.Google Scholar
Lindström, M. 1971. Lower Ordovician conodonts from Europe, p. 2161. InSweet, W. C. and Bergström, S. M.(eds.), Symposium on conodont biostratigraphy. Geological Society of America Memoir 127.Google Scholar
North American Commission on Stratigraphic Nomenclature. 1983. North American Stratigraphic Code. American Association of Petroleum Geologists Bulletin, 67:841875.Google Scholar
Olempska, E. 1994. Ostracods of the Mojcza Limestone, p. 129212. InDzik, J., Olempska, E., and Pisera, A.(eds.), Ordovician carbonate platform ecosystem of the Holy Cross Mountains, Poland. Palaeontologia Polonica, 53.Google Scholar
Öpik, A. A. 1935. Ostracoda from the Lower Ordovician Megalaspis-limestone in Estonia and Russia. Publication of the Geological Institution of the University of Tartu 44. Loodusuurijate Seltsi Aruande, 42:312.Google Scholar
Pokorný, V. 1954. A contribution to the taxonomy of the Paleozoic ostracods. Sbornik ústředniho ústavu geologickeho (oddíl paleontologický), for 1953, 20:213232.Google Scholar
Salas, M. J. 2011. Early Ordovician (Floian) ostracods from the Cordillera Oriental, Northwest Argentina. Geological Journal, 46:637650.Google Scholar
Salas, M. J. and Vaccari, N. E. 2012. New insights into the early diversification of the Ostracoda: Tremadocian ostracods from the Cordillera Oriental, Argentina. Acta Palaeontologica Polonica, 57:175190.Google Scholar
Salas, M. J., Vannier, J., and Williams, M. 2007. Early Ordovician ostracods from Argentina: their bearing on the origin of the binodicope and palaeocope clades. Journal of Paleontology, 81:13841395.Google Scholar
Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D., and Bowring, S. A. 2006. Reassessing the uranium decay constants for geochronology using IDTIMS U-Pb data. Geochimica et Cosmochimica Acta, 70:426445.CrossRefGoogle Scholar
Sedgwick, A. and M'Coy, F. 1851. A synopsis of the classification of the British Palaeozoic rocks, with a systematic description of the British Palaeozoic fossils found in the Geological Museum of the University of Cambridge. Publisher not named, London and Cambridge, 354p.Google Scholar
Siveter, D. J. 2009. Ordovician, p. 1544. InWhittaker, J. E. and Hart, M. B., (eds.), Ostracods in British Stratigraphy. The Micropalaeontological Society, Special Publications.Google Scholar
Siveter, D. J., Rushton, A. W. A., and Siveter, D. J. 1995. An ostracod-like arthropod with appendages preserved from the Lower Ordovician of England. Lethaia, 152:299307.Google Scholar
Tinn, O. and Meidla, T. 2004. Phylogenetic relationships of early Middle Ordovician ostracods of Baltoscandia. Palaeontology, 47:199221.Google Scholar
Tinn, O., Meidla, T., and Ainsaar, L. 2006. Arenig (Middle Ordovician) ostracods from Baltoscandia: fauna, assemblages and biofacies. Palaeogeography, Palaeoclimatology, Palaeoecology, 241:492514.Google Scholar
Tinn, O., Meidla, T., and Sohar, K. 2010. Intraspecific variation and polymorphism in the ostracode Conchoprinitia socialis (Br⊘gger, 1882) from the early Middle Ordovician of Baltoscandian palaeobasin. Czech Geological Survey, Bulletin of Geosciences, 84:603616.Google Scholar
Tolmacheva, T. J., Egerquist, E., Meidla, T., Tinn, O., and Holmer, L. 2003. Faunal composition and dynamics in the Lower–Middle Ordovician of the East Baltic. Geological Magazine, 140:3144.Google Scholar
Webby, B. D., Cooper, R. A., Bergström, S. M., and Paris, F. 2004. Stratigraphic framework and time slices, p. 4147. InWebby, B. D., Paris, F., Droser, M. L., and Percival, I. G.(eds.), The Great Ordovician Biodiversification Event. Columbia University Press, New York.Google Scholar
Whitfield, R. P. 1889. Observations on some imperfectly known fossils from the Calciferous sandrock of Lake Champlain and description of several new forms. American Museum of Natural History Bulletin, 2:4163.Google Scholar
Whittard, W. F. 1955. The Ordovician trilobites of the Shelve Inlier, west Shropshire. Part 1. Monograph of the Palaeontological Society, London, 109:140.Google Scholar
Williams, M. and Siveter, D. J. 1998. British Cambrian and Tremadoc bradoriid and phosphatocopid arthropods. Monograph of the Palaeontological Society, London, 152:149.Google Scholar
Williams, M., Siveter, D. J., Salas, M. J., Vannier, J., Popov, L. E., and Ghobadi Pour, M. 2008. The earliest ostracods: the geological evidence. Senckenbergiana Lethaea, 88:1121.Google Scholar