Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T15:05:19.935Z Has data issue: false hasContentIssue false

First fossil crabs (Crustacea, Decapoda, Brachyura) from the Kerguelen Islands (Miocene) with exceptionally preserved gills

Published online by Cambridge University Press:  26 February 2018

Ninon Robin
Affiliation:
UMR 7207 CR2P Sorbonne Université, Muséum national d’Histoire naturelle, CNRS, UPMC, 8 rue Buffon, CP 38, 75005 Paris-France 〈[email protected]〉; 〈[email protected]〉; 〈[email protected]
Barry W.M. Van Bakel
Affiliation:
Oertijdmuseum De Groene Poort, Bosscheweg 80, 5283 WB Boxtel, the Netherlands; and Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands 〈[email protected]
Marie-Madeleine Blanc-Valleron
Affiliation:
UMR 7207 CR2P Sorbonne Université, Muséum national d’Histoire naturelle, CNRS, UPMC, 8 rue Buffon, CP 38, 75005 Paris-France 〈[email protected]〉; 〈[email protected]〉; 〈[email protected]
Pierre Y. Noël
Affiliation:
Muséum national d’Histoire naturelle, UMS 2006 PatriNat, CP48, 75005 Paris-France 〈[email protected]
Laurent Lemaire
Affiliation:
Chemin de pré rond, 73630 Le Chatelard-France 〈[email protected]
Sylvain Charbonnier
Affiliation:
UMR 7207 CR2P Sorbonne Université, Muséum national d’Histoire naturelle, CNRS, UPMC, 8 rue Buffon, CP 38, 75005 Paris-France 〈[email protected]〉; 〈[email protected]〉; 〈[email protected]

Abstract

Kerguelen Islands are predominantly volcanic lands, thus fossil references are very uncommon. However, its Miocene fossils are of specific interest for understanding migration routes of some taxa during the Cenozoic, given the intermediary position of Kerguelen with various continents. Despite this fossil rarity, we studied herein hundreds of nodules corresponding to the sole known fossil brachyurans (and unique Decapoda) from Kerguelen both for their systematics and their preservation. Indeed, these crabs display some internal fragile structures that are rarely fossilized, such as the gills’ branchial lamellae, preserved in volume. The preservation of these gills and their diagenetic features were documented through traditional imagery (SEM), including morphological comparison to modern gills, and with petrographic and geochemical analyses (EDS, X-ray diffractometry). Some cheilostome bryozoans were observed as probable foulers of the crabs carcasses. The fossil material corresponds to a new cancrid crab (Romaleon franciscae n. sp.) and its occurrence may imply a novel route from South America westward for the geographic migration of the genus Romaleon, since its Cretaceous emergence. The cup-shape and the number and the organization of the gills in these fossil Cancridae specimens are similar to those observed in their extant representatives. Gill preservation in 3D is linked to very early phosphatization of the system during diagenesis, as shown by the nodule matrix, and likely to deposition of a thin clayey cover on the soft-tissues. The implication of intrinsic phosphorous in the differential phosphatization of the crabs’ anatomy remains difficult to determine.

Type
Articles
Copyright
Copyright © 2018, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P.A., 1988, Phosphatised soft-bodied squids from the Jurassic Oxford Clay: Lethaia, v. 21, p. 403410.CrossRefGoogle Scholar
Amui-Vedel, A.M., Hayward, P.J., and Porter, J.S., 2007, Zooid size and growth rate of the bryozoan Cryptosula pallasiana Moll in relation to temperature, in culture and in its natural environment: Journal of Experimental Marine Biology and Ecology, v. 353, p. 112.CrossRefGoogle Scholar
Audo, D., Schweigert, G., Saint Martin, J.P., and Charbonnier, S., 2014, High biodiversity in Polychelida crustaceans from the Jurassic La Voulte-sur-Rhône Lagerstätte: Geodiversitas, v. 36, p. 489525.CrossRefGoogle Scholar
Bell, T., 1835, Observations on the genus Cancer of Dr. Leach (Platycarcinos, Latr.), with descriptions of three new species: Proceedings of Zoological Society of London, v. 3, p. 8688.Google Scholar
Bentov, S., Aflalo, E.D., Tynyakov, J., Glazer, L., and Sagi, A., 2016, Calcium phosphate mineralization is widely applied in crustacean mandibles: Scientific reports, v. 6, p. 22118 DOI: 10.1038/srep22118.CrossRefGoogle ScholarPubMed
Birnbaum, S.J., Wireman, J.W., and Borowski, R., 1989, Silica precipitation induced by the anaerobic sulfate reducing bacterium Desulfovibrio desulfuricans: effects upon cell morphology and implications for preservation, in Crick, R.E., ed., Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals. Based on the Proceedings of the Fifth International Symposium on Biomineralization, held May 18–23, 1986, Arlington, Texas: New York, London, Plenum Press, p. 507–516.CrossRefGoogle Scholar
Bishop, G.A., 1984, Orbital bulla reticularis: a new orbital structure of a Cretaceous crab: Journal of Crustacean Biology, v. 4, p. 514517.CrossRefGoogle Scholar
Bosselmann, F., Romano, P., Fabritius, H., Raabe, D., and Epple, M., 2007, The composition of the exoskeleton of two crustacea: the American lobster Homarus americanus and the edible crab Cancer pagurus : Thermochimica Acta, v. 463, p. 6568.CrossRefGoogle Scholar
Briggs, D.E.G., and Kear, A.J., 1993, Fossilization of soft tissue in the laboratory: Science, v. 259, p. 14391442.CrossRefGoogle ScholarPubMed
Briggs, D.E.G., and Kear, A.J., 1994, Decay and mineralization of shrimps: Palaios, v. 9, p. 431456.CrossRefGoogle Scholar
Briggs, D.E.G., and Wilby, P.R., 1996, The role of the calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossils: Journal of the Geological Society, v. 153, p. 665668.CrossRefGoogle Scholar
Burkenroad, M.D., 1963, The evolution of the Eucarida (Crustacea Eumalacostraca) in relation to the fossil record: Tulane Studies in Geology, v. 2, p. 116.Google Scholar
Calman, W.T., 1909, On decapod Crustacea from Christmas Island, collected by Dr. CW Andrews, FRS: Proceedings of the Zoological Society of London, v. 1909, p. 703713.Google Scholar
Carriol, R.P., Leyrit, H., and Giret, A., 1992, Balanoidea (Crustacea, Cirripedia) du Pliocène des Kerguelen: Geobios, v. 25, p. 383388.CrossRefGoogle Scholar
Casadío, S., Feldmann, R.M., Parras, A., and Schweitzer, C.E., 2005, Miocene fossil Decapoda (Crustacea: Brachyura) from Patagonia, Argentina, and their paleoecological setting: Annals of Carnegie Museum, v. 74, p. 151188, https://doi.org/10.2992/0097-4463(2005)74[151:MFDCBF]2.0.CO;2.CrossRefGoogle Scholar
Charbonnier, S., Teruzzi, G., Audo, D., Lasseron, M., Haug, C., and Haug, J.T., 2017, New thylacocephalans from the Cretaceous Lagerstätten of Lebanon: Bulletin de la Société Géologique de France, BSGF-Earth Sciences Bulletin, v. 188, 19 p. https://doi.org/10.1051/bsgf/2017176.CrossRefGoogle Scholar
Cushman, J.A., 1905, Fossil crabs of the Gay Head Miocene: The American Naturalist, v. 39, p. 381390.CrossRefGoogle Scholar
De Haan, W., 1833, Crustacea, in Von Siebold, P.F., ed., Fauna japonica sive descriptio animalium, quae in itinere per Japoniam, jussu et auspiciis superiorum, qui summum in India batava Imperium tenent, suscepto, annis 1823–1830 collegit, notis, observationibus et adumbrationibus illustravit: Leiden, Lugduni Batavorum, p. 1243.Google Scholar
Duchêne, J.C., 1989, Kerguelen: recherches au bout du monde: Tours, Territoire des Terres Australes et Antarctiques Françaises, Mission de Recherche, 360 p.Google Scholar
Dzik, J, 2008, Gill structure and relationships of the Triassic cycloid crustaceans: Journal of Morphology, v. 269, p. 15011519.CrossRefGoogle ScholarPubMed
Fabricius, J.C., 1775, Systema entomologiae, sistens insectorum classes, ordines, genera, species, adjectis synonymis, locis, descriptionibus, observationibus: Lausanne, Kort, 832 p.Google Scholar
Feldmann, R.M., and Schweitzer, C.E., 2006, Paleobiogeography of southern hemisphere decapod Crustacea: Journal of Paleontology, v. 80, p. 83103.CrossRefGoogle Scholar
Feldmann, R.M., and Schweitzer, C.E., 2010, The oldest shrimp (Devonian: Famennian) and remarkable preservation of soft tissue: Journal of Crustacean Biology, v. 30, p. 629635.CrossRefGoogle Scholar
Feldmann, R.M., and Wilson, M.T., 1988, Eocene decapod crustaceans from Antarctica, in Feldmann, R.M., and Woodburne, M.O., eds., Geology and Paleontology of Seymour Island, Antarctic Peninsula: Geological Society of America, Memoirs 169, p. 465488.Google Scholar
Feldmann, R.M., Schweitzer, C.E., and McLauchlan, D., 2006, Additions to the records for decapod Crustacea from Motunau and Glenafric beaches, North Canterbury, New Zealand: New Zealand Journal of Geology and Geophysics, v. 49, p. 417427.CrossRefGoogle Scholar
Fletcher, H., 1938, Marine tertiary fossils and a description of a recent Mytilus from Kerguelen Island: BANZ Antarctic Research Expedition Reports, Serie A, v. 1938, p. 103116.Google Scholar
Franţescu, O.D., Feldmann, R.M., and Schweitzer, C.E., 2016, Cretaceous fossil Raninoida De Haan, 1839 (Crustacea, Decapoda, Brachyura) from northeast Texas: Journal of Paleontology, v. 90, p. 11181132.CrossRefGoogle Scholar
Giret, A., Leyrit, H., Lauriat-Rage, A., Grégoire, M., Carriol, R.P., and Lozouet, P., 1994, Miocène des Kerguelen: la faune marine du Mont Rond et ses implications géologiques et paléoclimatologiques: Comptes Rendus de l’Académie des Sciences de Paris, v. 319, p. 719726.Google Scholar
Giret, A., Weis, D., Grégoire, M., Mattielli, N., Moine, B., Michon, G., Scoates, J., Sylvie Tourpin, S., Delpech, G., Gerbe, M.-C., Doucet, S., Ethien, R., and Cottin, J.-Y., 2003, L’archipel des Kerguelen: les plus vieilles îles dans le plus jeune océan: Geologues-Paris 2003, p. 2339.Google Scholar
Gistel, J.N.F.X., 1848, Naturgeschichte des Thierreichs fur Höhere Schulen: Stuttgart, Hoffman’scherlags-Buchhandlung, 310 p.Google Scholar
Guary, J.C., and Négrel, R., 1981, Calcium phosphate granules: a trap for transuranics and iron in crab hepatopancreas: Comparative Biochemistry and Physiology Part A: Physiology, v. 68, p. 423427.Google Scholar
Gueriau, P., Mocuta, C., Dutheil, D.B., Cohen, S.X., and Thiaudière, D., The OT1 Consortium, Charbonnier, S., Clément, G., and Bertrand, L., 2014, Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils: PLoS ONE, v. 9, 1, e86946, p. https://doi.org/10.1371/journal.pone.0086946.CrossRefGoogle ScholarPubMed
Guinot, D., 1977, Propositions pour une nouvelle classification des Crustacés Décapodes Brachyoures: Comptes Rendus de l’Académie des Sciences de Paris, Série D, v. 285, p. 10491052.Google Scholar
Haug, C., Nyborg, T., and Vega, F.J., 2013, An exceptionally preserved upogebiid (Decapoda: Reptantia) from the Eocene of California: Boletín de la Sociedad Geológica Mexicana, v. 65, p. 235248.CrossRefGoogle Scholar
Hombron, J.B., and Jacquinot, H., 1846, Crustacés. Atlas d’Histoire Naturelle. Zoologie, in Dumont d’Urville, J.S.C., ed., Voyage au Pôle Sud et dans l’Océanie sur les corvettes l’Astrolabe et la Zélée pendant les années 1837–1840 sous le commandement de M. Dumont-d’Urville capitaine de vaisseau, publié sous les auspices du département de la marine et sous la direction supérieure de M. Jacquinot, capitaine de vaisseau, commandant de la Zélée: Paris, Gide et Cie, pls. 58.Google Scholar
Imaizumi, R., 1962, Miocene Cancer (Brachyura) of Japan: Science reports of the Tōhoku University, Sendai, Japan, Second series: Geology, v. 5, p. 233247.Google Scholar
Jakobsen, S.L., and Feldmann, R.M., 2004, Epibionts on Dromiopsis rugosa (Decapoda: Brachyura) from the late Middle Danian limestones at Fakse Quarry, Denmark: novel preparation techniques yield amazing results: Journal of Paleontology, v. 78, p. 953960.Google Scholar
Jauvion, C., Audo, D., Charbonnier, S., and Vannier, J., 2016, Virtual dissection and lifestyle of a 165-million-year-old female polychelidan lobster: Arthropod Structure & Development, v. 45, p. 122132.CrossRefGoogle ScholarPubMed
Kato, H., 1996, Miocene decapod crustaceans from the Chichibu Basin, Central Japan: Transactions and Proceedings of the Palaeontological Society of Japan , v. 183, p. 500521.Google Scholar
Kato, H., and Hikida, Y., 2002, A new fossil Cancer (Decapoda, Brachuyra, Candridae) from the Middle Miocene of northern Hokkaido, Japan: Bulletin if the Nakagawa Museum of Natural History, v. 5, p. 4752.Google Scholar
Latreille, P.A., 1802, Histoire Naturelle, Générale et Particulière des Crustacés et des Insectes. Ouvrage faisant suite à l’Histoire Naturelle Générale et Particulière, composée par Leclerc de Buffon, et Rédigée par C. S. Sonnini, Membre de Plusieurs Sociétés Savantes. Famille naturelles des genres. Tome troisième: Paris, F. Dufart, 467 p.Google Scholar
Lauriat-Rage, A., Carriol, R.P., Lozouet, P., Giret, A., and Leyrit, H., 2002, Miocene molluscs and barnacles from Mont Rond, Kerguelen Islands: Alcheringa, v. 26, p. 275287.CrossRefGoogle Scholar
Leyrit, H., 1992, Kerguelen: cartographie et magmatologie des presqu'îles Jeanne d’Arc et Ronarc’h [Ph.D. dissertation]: Orsay, Université Paris-Sud, 240 p.Google Scholar
Linnaeus, C., 1758, Systema Naturae per Regna Tria Naturae: Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis, 10th ed., Stockholm, Laurentius Salvius, 824 p.Google Scholar
Lorand, J.P., Delpech, G., Grégoire, M., Moine, B., O’Reilly, S.Y., and Cottin, J.Y., 2004, Platinum-group elements and the multistage metasomatic history of Kerguelen lithospheric mantle (South Indian Ocean): Chemical Geology, v. 208, p. 195215.CrossRefGoogle Scholar
Luque, J., 2015, A puzzling frog crab (Crustacea: Decapoda: Brachyura) from the Early Cretaceous Santana Group of Brazil: frog first or crab first?: Journal of Systematic Palaeontology, v. 13, p. 153166.CrossRefGoogle Scholar
Luquet, G., 2012, Biomineralizations: insights and prospects from crustaceans: Zookeys, v. 176, p. 103121.CrossRefGoogle Scholar
Martill, D.M., 1988, Preservation of fish in the Cretaceous Santana Formation of Brazil: Palaeontology, v. 31, p. 118.Google Scholar
Martill, D.M., 1990, Macromolecular resolution of fossilized muscle tissue from an elopomorph fish: Nature, v. 346, p. 171172.CrossRefGoogle Scholar
Molina, J.I., 1782, Saggio sulla storia naturale del Chili: Bologna, Nella Stamperia di Tomaso d’Aquino, 367 p.Google Scholar
Moore, R.C., ed., 1969, Treatise on Invertebrate Paleontology, Part R, Arthropoda 4: Lawrence, Kansas and Boulder, Colorado, University of Kansas and The Geological Society of America, 651 p.Google Scholar
Nations, D., 1975, The genus Cancer (Crustacea, Brachyura): systematics, biogeography and fossil record: Bulletin of the Natural History Museum of Los Angeles County, v. 23, p. 1104.Google Scholar
Norman, C.A., 1903, Notes on the natural history of East Finmark: Journal of Natural History, v. 11, p. 132.CrossRefGoogle Scholar
Nougier, J., 1970, Contribution à l'étude géologique et géomorphologique des Iles Kerguelen [Ph.D. dissertation]: Paris, Faculté des Sciences de Paris, 440 p.Google Scholar
Pearson, J., 1908, L.M.B.C. Memoirs on Typical British Marine Plants and Animals XVI Cancer : London, Williams and Norgate, 209 p.Google Scholar
Philippe, M., and Giret, A., 1998, Bois fossiles tertiaires et quaternaires de Kerguelen (océan Indien austral): Comptes Rendus de l’Académie des Sciences: Series II A Earth and Planetary Science, v. 326, p. 901906.Google Scholar
Rathbun, M.J., 1900, Synopses of North-American invertebrates. VII. The Cyclometopous or Cancroid crabs of North America: The American Naturalist, v. 34, p. 131143.CrossRefGoogle Scholar
Rathbun, M.J., 1917, Description of a new crab from the California Pliocene: Proceedings of the United States National Museum, v. 53, p. 451452.CrossRefGoogle Scholar
Rathbun, M.J., 1926, The fossil stalk-eyed Crustacea of the Pacific slope of North America: United States National Museum Bulletin, v. 138, p. 1155.Google Scholar
Rathbun, M.J., 1932, A new species of Cancer from the Pliocene of the Los Angeles Basin: Journal of the Washington Academy of Sciences, v. 22, p. 1920.Google Scholar
Richerde Forges, B. de Forges, B., 1977, Étude du crabe des îles Kerguelen: Halicarcinus planatus (Fabricius): Comité National Français des Recherches Antarctiques, v. 42, p. 71133.Google Scholar
Rumsey, B.T., Klompmaker, A.A., and Portell, R.W., 2016, Paleobiogeography of the fossil box crab Calappilia (Brachyura: Calappidae) with a new species from the Eocene–Oligocene of Florida, USA: Journal of Crustacean Biology, v. 36, p. 329337.CrossRefGoogle Scholar
Robin, N., Van Bakel, B.W.M., d’Hondt, J.L., and Charbonnier, S., 2015, A new early brachyuran (Crustacea, Decapoda) from the Middle Jurassic of northwest France, epibionts and ecological considerations: Contributions to Zoology, v. 84, p. 179191.CrossRefGoogle Scholar
Sakai, T., 1969, Two new genera and twenty-two new species of crabs from Japan: Proceedings of the Biological Society of Washington, v. 82, p. 243280.Google Scholar
Sakai, T., 1983, Eight new species of Indo-Pacific crabs from the collections of the Smithsonian Institution: Proceedings of the Biological Society of Washington, v. 96, p. 623631.Google Scholar
Saint LaurentM., de M., de, 1980, Sur la classification et la phylogénie des Crustacés Décapodes Brachyoures. I. Podotremata Guinot, 1977 and II Heterotremata et Thoracotremata Guinot 1977: Comptes Rendus hebdomadaires des séances de l’Académie des Sciences (Paris), série D, v. 290, p. 12651268, 1317–1320.Google Scholar
Schultze, H.-P., 1989, Three-dimensional muscle preservation in Jurassic fishes of Chile: Revista Geologica de Chile, v. 16, p. 183215.Google Scholar
Schweitzer, C.E., 2001, Paleobiogeography of Cretaceous and Tertiary decapod crustaceans of the North Pacific Ocean: Journal of Paleontology, v. 75, p. 808826.2.0.CO;2>CrossRefGoogle Scholar
Schweitzer, C.E., and Feldmann, R.M., 2000, Re-evaluation of the Cancridae Latreille, 1802 (Decapoda: Brachyura) including three new genera and three new species: Contributions to Zoology, v. 69, p. 223250.CrossRefGoogle Scholar
Seward, A.C., and Conway, V., 1934, A phytogeographical problem: fossil plants from the Kerguelen Archipelago: Annals of Botany, v. 3, p. 715741.CrossRefGoogle Scholar
Siveter, D.J., Sutton, M.D., Briggs, D.E.G., and Siveter, D.J., 2003, An ostracode crustacean with soft parts from the Lower Silurian: Science, v. 302, p. 17491751.CrossRefGoogle ScholarPubMed
Siveter, D.J., Briggs, D.E. G., Siveter, D.J., and Sutton, M.D., 2010, An exceptionally preserved myodocopid ostracod from the Silurian of Herefordshire, UK: Proceedings of the Royal Society of London B: Biological Sciences, v. 277, p. rspb20092122.Google Scholar
Stimpson, W., 1854–1857, On some Californian Crustacea: Proceedings of the Californian Academy of Natural Sciences, 2nd ed, 1, p. 188.Google Scholar
Tanaka, G., Smith, R.J., Siveter, D.J., and Parker, A.R., 2009, Three-dimensionally preserved decapod larval compound eyes from the Cretaceous Santana Formation of Brazil: Zoological Science, v. 26, p. 846850.CrossRefGoogle ScholarPubMed
Tate, R., 1900, On the occurrence of marine fossiliferous rocks at Kerguelen Island: Transactions of the Royal Society of South Australia, v. 24, p. 104108.Google Scholar
Vannier, J., Schoenemann, B., Gillot, T., Charbonnier, S., and Clarkson, E., 2016, Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic: Nature Communications, v. 7, p. 10320. doi: 10.1038/ncomms10320.CrossRefGoogle ScholarPubMed
Vega, F.J., Jackson, J., and Ossó, À., 2014, Exceptional preservation of a late Cenomanian (Late Cretaceous) crab from Texas: USA, Boletín de la Sociedad Geológica Mexicana, v. 66, p. 215221.Google Scholar
Wilby, P.R., 1993, The role of organic matrices in post-mortem phosphatization of soft-tissues: Kaupia, v. 2, p. 99113.Google Scholar
Wilby, P.R., and Martill, D.M., 1992, Fossil fish stomachs: a microenvironment for exceptional preservation: Historical Biology, v. 6, p. 2536.CrossRefGoogle Scholar