Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:20:28.618Z Has data issue: false hasContentIssue false

Favosamaceria cooperi new group and form: A widely dispersed, time-restricted thrombolite

Published online by Cambridge University Press:  20 May 2016

Russell S. Shapiro
Affiliation:
Department of Geology, Gustavus Adolphus College, 800 W. College, St. Peter, Minnesota 56082,
Stanley M. Awramik
Affiliation:
Department of Geological Sciences, Preston Cloud Research Laboratory, University of California, Santa Barbara 93016,

Abstract

The distinctive, branched thrombolite, Favosamaceria cooperi new group and form, is found widely in the Great Basin, USA, where it is restricted to the Late Cambrian Saukia trilobite Zone. This thrombolite is distinguished by a hedgerow, mazelike organization of ridges similar to garden walls (maceriae) in plan view, branching of ridges into daughter ridges and columns, the polymorphic nature of dark, 1–4 mm mesoclots, and the relative consistency of maceria width (approximately 1 cm). As a group, Favosamaceria is found elsewhere in Upper Cambrian strata of the Argentine Precordillera, Appalachians, and Upper Mississippi Valley, as well as in Lower Ordovician deposits of the Canadian Arctic and Newfoundland. The distribution of the group around Laurentia illustrates the use of microbialites in biogeographic studies.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahr, W. M. 1971. Paleoenvironment, algal structures, and fossil algae in the Upper Cambrian of central Texas. Journal of Sedimentary Petrology, 41:205216.Google Scholar
Aitken, J. D. 1967. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology, 37:11631178.Google Scholar
Armella, C. 1994. Thrombolitic-stomatolitic cycles of the Cambro–Ordovician boundary sequence, Precordillera Oriental basin, western Argentina, p. 421441. In Bertrand-Sarfati, J. and Monty, C. L. V. (eds.), Phanerozoic Stromatolites II. Kluwer Academic, Dordrecht, Netherlands.Google Scholar
Armella, C., Cabaleri, N. G., and Valencio, S. 1996. Modelo paleoambiental de la Formación La Flecha (Cámbrico superior) en el área de Jáchal, Provincia de San Juan. Revista de la Asociación Geológica Argentina, 51:165176.Google Scholar
Awramik, S. M., and Sprinkle, J. 1999. Proterozoic stromatolites: The first marine evolutionary biota. Historical Biology, 13:241253.Google Scholar
Baldis, B. A., Beresi, M. S., Bordonaro, O. L., and Uliarte, E. 1981. Estromatolitos, trombolitos y formas afines en el límite Cámbrico–Ordovícico del oeste Argentino. Anais II Congresso Latino-Americano de Paleontologia, Porto Alegre, Rio Grande do Sol, Brasil, 1:1930.Google Scholar
Bertrand-Sarfati, J., and Awramik, S. M. 1992. Stromatolites of the Mescal Limestone (Apache Group, middle Proterozoic, central Arizona): Taxonomy, biostratigraphy, and paleoenvironments. Geological Society of America Bulletin, 104:11381155.Google Scholar
Buggisch, W., Bordonaro, O. L., Canas, F. L., Von Gosen, W., Keller, M., Krumm, S., Lehnert, O., and Loske, W. 2000. The sedimentary and structural evolution of the Argentine Precordillera—the key of the history of an exotic terrane. Zeitschrift für Angewandte Geologie (Rio Sonderband), 1:355362.Google Scholar
Burne, R. V., and Moore, L. S. 1987. Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios, 2:241254.Google Scholar
Cao, Rui-Ji, and Bian, Li-Zeng. 1985. An attempt to codify the morphological characteristic numbers of stromatolites. Acta Palaeontologica Sinica, 25:629634. (In Chinese) Google Scholar
Cloud, P., Wright, L. A., Williams, E. G., Diehl, P. E., and Walter, M. R. 1974. Giant stromatolites and associated vertical tubes from the Upper Proterozoic Noonday Dolomite, Death Valley Region, Eastern California. Geological Society of America Bulletin, 85:8691882.Google Scholar
Cooper, J. D. (ed.). 1989. Cavalcade of Carbonates. Pacific Section, Society of Economic Paleontologists and Mineralogists, Fullerton, California, Book 61, 144 p.Google Scholar
de Freitas, T., and Mayr, U. 1995. Kilometre-scale microbial buildups in a rimmed carbonate platform succession, Arctic Canada: New insight on Lower Ordovician reef facies. Bulletin of Canadian Petroleum Geology, 43:407432.Google Scholar
Demicco, R. V. 1985. Platform and off-platform carbonates of the Upper Cambrian of western Maryland, U.S.A. Sedimentology, 32:122.Google Scholar
Demicco, R. V., Hardie, L. A., and Haley, J. S. 1987. Algal mounds of Upper Cambrian carbonates of Appalachians, western Maryland: Examples of early patch reef and marginal reefs. American Association of Petroleum Geologists Bulletin, 66:563.Google Scholar
Dolnik, T. A. 2000. Stromatolites and Microphytoliths in the Stratigraphy of Upper Riphean and Vendian Foldbelts of the Southern Siberian Platform. Filial Geo, Siberian Section of the Russian Academy of Sciences, Novosibirsk, 317 p.Google Scholar
Friedman, G. M. 1996. Early Ordovician microbial reef mounds of the Tribes Hill Formation, Mohawk Valley, New York. Carbonates and Evaporites, 11:226240.Google Scholar
Glumac, B., and Walker, K. R. 1997. Selective dolomitization of Cambrian microbial carbonate deposits—a key to mechanisms and environments of origin. Palaios, 12:98110.Google Scholar
Golubic, S. 1976. Organisms that build stromatolites, p. 113126. In Walter, M. R. (ed.), Stromatolites. Elsevier, Amsterdam.Google Scholar
Grey, K. 1989. Handbook for the study of stromatolites and associated structures (second draft), p. 82171. In Kennard, J. M. and Burne, R. V. (eds.), Stromatolite Newsletter, 14. Bureau of Mineral Resources, Geology and Geophysics, Canberra, Australia.Google Scholar
Grey, K. 1994. Stromatolites from the Palaeoproterozoic (Orosirian), Glengarry Group, Glengarry Basin, Western Australia. Alcheringa, 18:275300.Google Scholar
Grey, K., and Blake, D. H. 1999. Neoproterozoic (Cryogenian) stromatolites from the Wolfe Basin, east Kimberley, Western Australia: Correlation with the Centralian Superbasin. Australian Journal of Earth Sciences, 46:329341.Google Scholar
Grey, K., and Corkeron, M. 1998. Late Neoproterozoic stromatolites in glacigenic successions of the Kimberley region, Western Australia: Evidence for a younger Marinoan glaciation. Precambrian Research, 92:6587.Google Scholar
Griffin, K. M. 1989. Microbial reefs on a carbonate ramp: A case study from western North America with a global perspective, p. 101112. In Cooper, J. D. (ed.), Cavalcade of Carbonates. Pacific Section Society of Economic Paleontologists and Mineralogists, Book 61, Los Angeles.Google Scholar
Grotzinger, J. P., and Knoll, A. H. 1999. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences, 27:313358.Google Scholar
Hall, J. 1883. Description of Cryptozoön proliferum, n. g. and sp. Annual Report of the Regents-New York State Museum 36, pl. 6 and explanation.Google Scholar
Hegenberger, W. 1987. Gas escape structures in Precambrian peritidal carbonate rocks. Communication of the Geological Survey of S.W. Africa/Namibia, 3:4955.Google Scholar
Høeg, O. A. 1929. Studies in stromatolites I. A postglacial marine stromatolite from southeastern Norway. Norske Videnskabers Selskabs, 1929(1):160.Google Scholar
Hoffman, P. F., and Schrag, D. P. 2002. The snowball Earth hypothesis: Testing the limits of global change. Terra Nova, 14:129155.Google Scholar
Hofmann, H. J. 1977. On Aphebian stromatolites and Riphean stromatolite stratigraphy. Precambrian Research, 5:175205.Google Scholar
Hofmann, H. J., Grey, K., Hickman, A. H., and Thorp, R. I. 1999. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geological Society of America Bulletin, 111:12561262.Google Scholar
Howe, W. B. 1966. Digitate algal stromatolite structures from the Cambrian and Ordovician of Missouri. Journal of Paleontology, 40:6477.Google Scholar
Kah, L. C., and Grotzinger, J. P. 1992. Early Proterozoic (1.9 Ga) thrombolites of the Rocknest Formation, Northwest Territories. Palaios, 7:305315.Google Scholar
Keller, M., Buggisch, W., and Bercowski, F. 1989. Facies and sedimentology of Upper Cambrian shallowing-upward cycles in the La Flecha Formation (Argentine Precordillera). Zentralblatt für Geologie und Paläontologie Teil, 1:9991011.Google Scholar
Kennard, J. M. 1994. Thrombolites and stromatolites within shale-carbonate cycles, Middle-Late Cambrian Shannon Formation, Amadeus Basin, central Australia, p. 443471. In Bertrand-Sarfati, J. and Monty, C. L. V. (eds.), Phanerozoic Stromatolites II. Kluwer Academic, Dordrecht, Netherlands.Google Scholar
Kerans, C. 1985. Petrology of Devonian and Carboniferous carbonates of the Canning and Bonaparte Basins, Western Australia. Western Australian Petroleum Research Institute, Report 12, 384 p.Google Scholar
Krylov, I. N. 1967. Riphean and Lower Cambrian stromatolites of Tien-Shan and Karatau. Geological Institute (Moscow), Trudy, 171, 76 p. (In Russian) Google Scholar
Landing, E., Westrop, S. R., and Van Aller Hernick, L. 2003. Uppermost Cambrian–Lower Ordovician faunas and sequence stratigraphy, eastern New York and Vermont. Journal of Paleontology, 77:7898.Google Scholar
LeMone, D. V. 1976. Cyclic digitate algae of the Canadian (Lower Ordovician) Jose Formation, southern Franklin Mountains, El Paso County, Texas, p. 1123. In LeMone, D. V. and Lovejoy, E. M. P. (eds.), El Paso Geological Society Symposium on the Stratigraphy and Structure of the Franklin Mountains. El Paso Geological Society, Texas.Google Scholar
Logan, B. W., Rezak, R., and Ginsburg, R. N. 1964. Classification and environmental significance of algal stromatolites. Journal of Geology, 72:6883.Google Scholar
Marenco, P. J., Corsetti, F. A., and Bottjer, D. J. 2002. Noonday tubes: Observations and reinterpretations based on better preservation from a new locality, p. 3141. In Corsetti, F. A. (ed.), Proterozoic—Cambrian of the Great Basin and Beyond. Pacific Section, Society of Economic Paleontologists and Mineralogists, Fullerton, California, Book 93.Google Scholar
Maslov, V. P. 1938. On the nature of the stromatolite Conophyton (Pre-Cambrian, Lower Tunguska river, Siberia). Problems in Paleontology, Moscow University, 4:325332. (In Russian) Google Scholar
Maslov, V. P. 1953. Principles of nomenclature and systematics of stromatolites. Investigations of the Science Academy of the USSR, Geological Series, 1953(4):105112. (In Russian) Google Scholar
Maslov, V. P. 1960. Stromatolites: Their genesis, method of study, relationship to facies, and their geological importance based on examples from the Ordovician of the Siberian Platform. Academy of Sciences of the USSR, Geological Institute Proceedings, 41, 188 p. (In Russian) Google Scholar
Matthews, W. H. 1922. Mazes and Labyrinths. Longmans, Green and Company, London, 254 p.Google Scholar
Mazzullo, S. J., and Friedman, G. M. 1977. Competitive algal colonization of peritidal flats in a schizohaline environment: The Lower Ordovician of New York. Journal of Sedimentary Petrology, 47:398410.Google Scholar
Meng, Xianghua, Ming, Ge, and Tucker, M. E. 1997. Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114:189222.Google Scholar
Ming, Ge, Meng, Xianghua, and Chen, Rongkun. 1996. Bioherm sequence and sealevel change control, p. 147155. In Meng, Xianghua and Ming, Ge (eds.), Sinian–Ordovician Palaeogeography, Cyclicity-Rhythms and Sedimentary Events of China. International Academic Publishers, Beijing.Google Scholar
Moore, L. S., and Burne, R. V. 1994. The modern thrombolites of Lake Clifton, Western Australia, p. 319. In Bertrand-Sarfati, J. and Monty, C. (eds.), Phanerozoic Stromatolites II. Kluwer Academic Publishers, Dordrecht.Google Scholar
Nicholson, H. A., and Etheridge, R. Jr. 1878. A Monograph of the Silurian Fossils of the Girvan District in Ayrshire with Special Reference to Those Contained in the “Gray Collection.” Vol. I. Fasciculus I (Rhizopoda, Actinozoa, Trilobita). William Blackwood and Sons, Edinburgh, 135 p., 9 pls.Google Scholar
Palmer, A. R. 1998. A proposed nomenclature for stages and series for the Cambrian of Laurentia. Canadian Journal of Earth Sciences, 35: 323328.Google Scholar
Pereyra, M. E. 1987. Descripción y distribución de algunos morfogé-neros algales de la Formación San Roque; Cámbrica–Ordovícica, Jáchal, San Juan, Argentina. Décimo Congreso Geológico Argentino, San Miguel de Tucumán, Actas III:6568.Google Scholar
Playford, P. E. 2002. Palaeokarst, pseudokarst, and sequence stratigraphy in Devonian reef complexes of the Canning Basin, Western Australia, p. 763793. In Keep, M. and Moss, S. J. (eds.), Sedimentary Basins of Western Australia. PESA, Western Australia Branch, Perth, Western Australia.Google Scholar
Pratt, B. R. 1995. The origin, biota, and evolution of deep-water mud-mounds, p. 49123. In Monty, C. L. V., Bosence, D. W. J., Bridges, P. H., and Pratt, B. R. (eds.), Carbonate Mud-Mounds—Their Origin and Evolution. International Association of Sedimentologists Special Publication, 23.Google Scholar
Pratt, B. R., and James, N. P. 1982. Cryptalgal-metazoan bioherms of Early Ordovician age in the St. George Group, western Newfoundland. Sedimentology, 29:543569.Google Scholar
Pratt, B. R., Spincer, B. R., Wood, R. A., and Zhuravlev, A. Yu. 2001. Ecology and evolution of Cambrian reefs, p. 254274. In Zhuravlev, A. Yu. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Reid, R. P., Visscher, P. T., Decho, A. W., Stolz, J. F., Bebout, B. M., Dupraz, C., Macintyre, I. G., Paerl, H. W., Pinckney, J. L., Prufert-Bebout, L., Steppe, T. F., and Desmarais, D. J. 2000. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406:989992.Google Scholar
Riding, R., Awramik, S. M., Winsborough, B. M., Griffin, K. M., and Dill, R. F. 1990. Bahamian giant stromatolites: Microbial composition of surface mats. Geological Magazine, 128:227234.Google Scholar
Ross, R. J. Jr., Hintze, L. F., Ethington, R. L., Miller, J. F., Taylor, M. E., and Repetski, J. E. 1997. The Ibexian, lowermost series in the North American Ordovician, p. 150. In Taylor, M. E. (ed.), Early Paleozoic Biochronology of the Great Basin, western United States. United States Geological Survey Professional Paper, 1579.Google Scholar
Rowland, S., and Shapiro, R. S. 2002. Reef patterns and environmental influences in the Cambrian and earliest Ordovician, p. 95128. In Kiessling, W. and Flügel, E. (eds.), Phanerozoic Reef Patterns. SEPM (Society for Sedimentary Geology) Special Publication, 72.CrossRefGoogle Scholar
Semikhatov, M. A. 1962. Riphean and Lower Cambrian of the Yenisey Ridge. Transactions of the Science Academy of the USSR, 68, 242 p. (In Russian) Google Scholar
Semikhatov, M. A. 1976. Experience of stromatolite studies in the U.S.S.R., p. 337357. In Walter, M. R. (ed.), Stromatolites. Elsevier, Amsterdam.Google Scholar
Semikhatov, M. A., and Raaben, M. E. 2000. Proterozoic stromatolite taxonomy and biostratigraphy, p. 295306. In Riding, R. E. and Awramik, S. M. (eds.), Microbial Sediments. Springer-Verlag, Berlin.Google Scholar
Shapiro, R. S. 2000. A comment on the systematic confusion of thrombolites. Palaios, 15:166169.Google Scholar
Shapiro, R. S., and Awramik, S. M. 2000. Microbialite morphostratigraphy as a tool for correlating Late Cambrian–Early Ordovician sequences. Journal of Geology, 108:171180.Google Scholar
Taylor, J. F., Loch, J. D., and Perfetta, P. J. 1999. Trilobite faunas from Upper Cambrian microbial reefs in the central Appalachians. Journal of Paleontology, 73:326336.Google Scholar
Turner, E. C., James, N. P., and Narbonne, G. M. 2000. Taphonomic control on the microstructure in early Neoproterozoic reefal stromatolites and thrombolites. Palaios, 15:87111.Google Scholar
Wood, R. 1999. Reef Evolution. Oxford University Press, Oxford, 414 p.Google Scholar
Wright, L. A., Williams, E. G., and Cloud, P. E. 1978. Algal and cryptalgal structures and platform environments of late pre-Phanerozoic Noonday Dolomite, eastern California. Geological Society of America Bulletin, 89:321333.Google Scholar