Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T21:36:07.350Z Has data issue: false hasContentIssue false

The Eocene larger foraminifer Lepidocyclina ariana Cole and Ponton, from the so-called Polylepidina gardnerae horizon at Little Stave Creek, Alabama

Published online by Cambridge University Press:  20 May 2016

Edward Robinson*
Affiliation:
Department of Geology, University of the West Indies, Kingston 7, Jamaica

Abstract

Recent sampling for larger foraminifers in the so-called Polylepidina gardnerae horizon in the middle Eocene Lisbon Formation of the Little Stave Creek section, southwest Alabama, did not produce any examples of the lepidocyclinid foraminifer Polylepidina gardnerae Cole, but several specimens of the stratigraphically younger species, Lepidocyclina ariana Cole and Ponton, were recovered. Although the P. gardnerae horizon is named on nearly all figures of this important Gulf Coast section published since 1944, preliminary research has also failed to turn up a published basis for the identification of P. gardnerae at this locality. As L. ariana and P. gardnerae are not normally found together, it is the writer's opinion that true P. gardnerae probably has not been collected from any part of the Lisbon Formation at Little Stave Creek. If it does occur, it should be found at a lower horizon than that indicated in the literature.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C. G. 1987. On the classification of the Lepidocyclinidae (Foraminifera) with redescriptions of the unrelated Paleocene genera Actinosiphon and Orbitosiphon. Micropaleontology, 33:289317.Google Scholar
Bandy, O. L. 1949. Eocene and Oligocene foraminifera from Little Stave Creek, Clarke County, Alabama. Bulletins of American Paleontology, 32:5210.Google Scholar
Barker, R. W., and Grimsdale, T. F. 1936. A contribution to the phylogeny of the orbitoidal foraminifera, with descriptions of new forms from the Eocene of Mexico. Journal of Paleontology, 10:231247.Google Scholar
Baum, J. S., Baum, G. R., Thompson, P. R., and Humphrey, J. D. 1994. Stable isotopic evidence for relative and eustatic sea-level changes in Eocene to Oligocene carbonates, Baldwin County, Alabama. Geological Society of America Bulletin, 106:824839.Google Scholar
Baum, G. R., and Vail, P. R. 1988. Sequence stratigraphic concepts applied to Paleogene outcrops, Gulf and Atlantic Basins, p. 309327. In Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and van Wagoner, J. C. (eds.), Sea-level changes: an integrated approach. Society of Economic Paleontologists and Mineralogists Special Publication 42.Google Scholar
Bybell, L. M. 1975. Middle Eocene calcareous nannofossils at Little Stave Creek, Alabama. Tulane Studies in Geology and Paleontology, 11:177251.Google Scholar
Butterlin, J. 1970. Macroforaminferos y edad de la formacion Punta Mosquito (grupo Punta Carnero) de la isla de Margarita, Venezuela. Asociación Venezolano de Geologiá, Minería y Petróleo, Boletin Informativo, 13:273315.Google Scholar
Butterlin, J. 1981. Claves para la determinación de Macroforaminiferos de Mexico y del Caribe, del Cretacico supérior al Mioceno medio. Instituto Mexicano del Petróleo, Mexico, 219:151.Google Scholar
Butterlin, J. 1987. Origine et évolution des Lepidocyclines de la région des Caraïbes. Comparisons et relations avec les Lepidocyclines des autres régions du monde. Revue de Micropaléontologie, 29:203219.Google Scholar
Butterlin, J. 1990. Problémes poses par la systématique de la famille Lepidocyclinidae (Foraminiferida). Revista Española de Micropaleontología, 22:101126.Google Scholar
Cole, W. S. 1929. Three new Claiborne fossils. Bulletins of American Paleontology, 15:110.Google Scholar
Cole, W. S. 1938. Stratigraphy and micropaleontology of two deep wells in Florida. Florida State Geological Survey Bulletin, 16:173.Google Scholar
Cole, W. S. 1944. Stratigraphic and paleontologic studies of wells in Florida–No. 3. Florida State Geological Survey Bulletin, 26:1168.Google Scholar
Cole, W. S. 1956. Jamaican larger foraminifera. Bulletins of American Paleontology, 36:205233.Google Scholar
Cole, W. S., and Applin, E. R. 1964. Problems of the geographic and stratigraphic distribution of American middle Eocene large Foraminifera. Bulletins of American Paleontology, 47:148.Google Scholar
Cole, W. S., and Ponton, G. M. 1934. New species of Fabularia, Asterocyclina, and Lepidocyclina from the Florida Eocene. American Midland Naturalist, 15:138147.Google Scholar
Eva, A. N. 1980. Pre-cyclical chamber arrangement in the foraminiferal genus Polylepidina Vaughan 1924. Micropaleontology, 26:9094.Google Scholar
Frost, S. H., and Langenheim, R. L. Jr. 1974. Cenozoic Reef Biofacies. Northern Illinois University Press, De Kalb, Illinois, 388 p.Google Scholar
Gardner, J. 1957. Little Stave Creek, Alabama—paleoecologic study. Geological Society of America Memoir, 67:573588.Google Scholar
Gravell, D. W., and Hanna, M. A. 1938. Subsurface zones of correlation through Mississippi, Alabama, and Florida. American Association of Petroleum Geologists Bulletin, 22:9841013.Google Scholar
Grimsdale, T. F. 1959. Evolution in the American Lepidocyclinidae (Cainozoic Foraminifera): An interim view. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, Series B, 62:833.Google Scholar
Howe, H. V. 1939. Louisiana Cook Mountain Eocene foraminifera. State of Louisiana Department of Conservation, Geological Bulletin, 4:1122.Google Scholar
Mancini, E. A., and Tew, B. H. 1991. Relationships of Paleogene stage and planktonic foraminiferal boundaries to lithostratigraphic and allostratigraphic contacts in the eastern Gulf Coastal plain. Journal of Foraminiferal Research, 21:4866.Google Scholar
Martini, E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation, p. 739785. In Farinacci, A. (ed.), Proceedings 2nd. Planktonic Conference, Rome, 1970, Volume 2.Google Scholar
Miller, K. G., Thompson, P. R., and Kent, D. V. 1993. Integrated late Eocene-Oligocene stratigraphy of the Alabama coastal plain: Correlation of hiatuses and stratal surfaces to glacioeustatic lowerings. Paleoceanography, 8:313331.Google Scholar
Robinson, E. 1996. Using larger foraminifers in high resolution biostratigraphy: An example from the Eocene of the Gulf of Mexico and northern Caribbean. Palaios, 11:220229.Google Scholar
Robinson, E., and Jiang, M. M. 1995. Evolution of the foraminiferal genus Lepidocyclina in the middle Eocene and its implication for Gulf Coast stratigraphy. Gulf Coast Association of Geological Societies Transactions, 45:509517.Google Scholar
Siesser, W. G. 1983. Paleogene calcareous nannoplankton biostratigraphy: Mississippi, Alabama and Tennessee. Mississippi Bureau of Geology, Bulletin, 125:161.Google Scholar
Smith, R. H., Osanik, A., Hendy, W. J., Wilbert, L. J., Wasem, A. R., Monsour, E., Thomas, P., and Murray, G. E. Jr. 1944. Plan, geologic section, and stratigraphic section, Little Stave Creek, Clarke County, Alabama. In Southeastern Geological Society Guidebook, 1st. Field Trip, 2425.Google Scholar
Sin Hok, Tan 1939. On Polylepidina, Orbitocyclina, and Lepidorbitoides. De Ingenieur in Nederlandsch-Indie, IV, Mijnbouw en Geologie, Jaarg. 6, 5:5384.Google Scholar
Toulmin, L. D. 1962. Geology of the Hatchetigbee anticline area, southwestern Alabama. Guidebook, Gulf Coast Association of Geological Societies 12th Annual Meeting, New Orleans, 47 p.Google Scholar
Toulmin, L. D. 1977. Stratigraphic distribution of Paleocene and Eocene fossils in the eastern Gulf Coast region. Geological Survey of Alabama, Monograph 13, Volume 1, 602 p.Google Scholar
Vaughan, T. W. 1924. American and European Tertiary larger foraminifera. Geological Society of America Bulletin, 35:785822.Google Scholar
Vaughan, T. W. 1929. Studies of orbitoidal foraminifera: subgenus Polylepidina of Lepidocyclina and Orbitocyclina, a new genus. National Academy of Sciences Proceedings, 15:288295.Google Scholar