Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-02T21:43:52.009Z Has data issue: false hasContentIssue false

Eocene crinoids from Seymour Island, Antarctic Peninsula: paleobiogeographic and paleoecologic implications

Published online by Cambridge University Press:  20 May 2016

David L. Meyer
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221
Tatsuo Oji
Affiliation:
Geological Institute, University of Tokyo, Tokyo 113, Japan

Abstract

On the basis of recent collections from the Upper Eocene La Meseta Formation of Seymour Island, Antarctic Peninsula, the morphology, systematic position, taphonomy, and paleoecology of the isocrinid Metacrinus fossilis are investigated. A new species, Notocrinus rasmusseni, is described as the first comatulid crinoid known from the Antarctic fossil record. The systematic assignment of M. fossilis is maintained. Basal abrasion of calyxes and absence of long attached columns suggest that M. fossilis might have lost most of the column in adult stages and lived directly on the substratum, supported by some arms and a few cirri, similar to comatulids. About 10 percent of M. fossilis individuals show brachial regeneration, in contrast to regeneration frequencies of 70–90 percent among modern Japanese isocrinids. The anomalous occurrence of isocrinids in shallow-water facies of the La Meseta is attributed to a combination of reduced predation pressure, the presumed stalkless mode of life, and a favorable temperature regime in Antarctic surface waters prior to the onset of cooling at the close of the Eocene.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blake, D. B., and Zinsmeister, W. J. 1988. Eocene asteroids (Echinodermata) from Seymour Island, Antarctic Peninsula, p. 489498. In Feldmann, R. M. and Woodburne, M. O. (eds.), Geology and Paleontology of Seymour Island, Antarctic Peninsula. Geological Society of America, Memoir 169.Google Scholar
Bottjer, D. J., and Jablonski, D. 1988. Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. Palaios, 3:540560.Google Scholar
Carpenter, P. H. 1882. Report on the results of dredging under the supervision of Alexander Agassiz, in the Gulf of Mexico (1877-1878) and the Caribbean Sea (1878-1879) by the U.S. Coast Survey steamer “Blake,” Lieutenant-Commander C. D. Sigsbee, U.S.N., commanding, and Commander J. R. Bartlett, U.S.N., commanding. XVIII: the stalked crinoids of the Caribbean Sea. Harvard University, Museum of Comparative Zoology, Bulletin, 10:165181.Google Scholar
Carpenter, P. H. 1884. Report upon the Crinoidea collected during the Voyage of H.M.S. Challenger during the Years 1873–1876. Report on the Scientific Results of the Voyage of H.M.S. Challenger, Zoology, Part I. General morphology, with descriptions of the stalked crinoids, 11:1442.Google Scholar
Clark, A. H. 1908. New genera of unstalked crinoids. Biological Society of Washington, Proceedings, 21:125136.Google Scholar
Clark, A. H. 1923. A revision of the Recent representatives of the crinoid family Pentacrinidae, with the diagnoses of two new genera. Journal of the Washington Academy of Science, 13:812.Google Scholar
Clark, A. H., and Clark, A. M. 1967. A monograph of the existing crinoids. U.S. National Museum Bulletin, Number 82, 1, Part 5, 860 p.Google Scholar
Dearborn, J. H., and Rommel, J. A. 1969. Crinoidea, p. 3536. In Bushnell, V. C. and Hedgpeth, J. W. (eds.), Distribution of Selected Groups of Marine Invertebrates in Waters South of 35°S Latitude. Antarctic Map Folio Series, Folio 11. American Geographical Society.Google Scholar
Ettensohn, F. R. 1984. Unattached Paleozoic stemless crinoids as environmental indicators. Geobios, Memoire special, 8:6368.Google Scholar
Gislén, T. 1924. Echinoderm studies. Zoologiska Bidrag fran Uppsala, 9, 330 p.Google Scholar
Kirk, E. 1911. The structure and relationships of certain eleutherozoic Pelmatozoa. Proceedings of the U.S. National Museum, 41(1846), 137 p.Google Scholar
Lane, N. G. 1971. Crinoids and reefs, p. 14301443. In Proceedings of the North American Paleontological Convention, Part J. Allen Press, Lawrence, Kansas.Google Scholar
Meyer, D. L. 1985. Evolutionary implications of predation on Recent comatulid crinoids from the Great Barrier Reef. Paleobiology, 11:154164.Google Scholar
Meyer, D. L., and Macurda, D. B. Jr. 1977. Adaptive radiation of the comatulid crinods. Paleobiology, 3:7482.Google Scholar
Meyer, D. L., Tobin, R. C., Pryor, W. A., Harrison, W. B., and Osgood, R. G. 1981. Stratigraphy, sedimentology, and paleoecology of the Cincinnatian Series (Upper Ordovician) in the vicinity of Cincinnati, Ohio, p. 3171. In Roberts, T. G. (ed.), GSA Cincinnati '81 Field Trip Guidebooks, 1. American Geological Institute, Falls Church, Virginia.Google Scholar
Mortensen, T. 1917. Notocrinus virilis, n. g., n. sp. a new viviparous crinoid from the Antarctic Sea. Videnskabelige Meddelelser frå Dansk Naturhistorik Forening i Köbenhaven, 68:205208.Google Scholar
Mortensen, T. 1920. The Crinoidea of the Swedish Antarctic Expedition: Wissenschaftliche Ergebnisse der Schwedischen Südpolar-Expedition 1901–1903. Band VI, Zoologie, II:123.Google Scholar
Oji, T. 1986. Skeletal variation related to arm regeneration in Metacrinus and Saracrinus, Recent stalked crinoids. Lethaia, 19:355360.Google Scholar
Oji, T. 1989. Distribution of stalked crinoids from Japanese and nearby waters, p. 2743. In Ohba, H., Hayami, I., and Mochizuki, K. (eds.), Current Aspects of Biogeography in West Pacific and East Asian Regions. Nature and Culture, No. 1. The University Museum, The University of Tokyo.Google Scholar
Prothero, D. R. 1989. Stepwise extinctions and climatic decline during the later Eocene and Oligocene, p. 217234. In Donovan, S. K. (ed.), Mass Extinctions: Processes and Evidence. Columbia University Press, New York.Google Scholar
Rasmussen, H. W. 1978. Articulata, p. T813T928. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Rasmussen, H. W. 1979. Crinoideos del Cretacico Superior y del Terciario Inferior de la Isla Vicecomodoro Marambio (Seymour Island), Antartida. Contribuciones cientificas del Instituto Antartico Argentino, 4:7997.Google Scholar
Roux, M., and Montenat, C. 1977. Sites à Crinoides pédonculés et bathymétrie des bassins messiniens dans les Cordillières bétiques orientales (Espagne méridionale). Bulletin de la Société géologique de France, 19:405416.Google Scholar
Sadler, P. M. 1988. Geometry and stratification of uppermost Cretaceous and Paleogene units on Seymour Island, northern Antarctic Peninsula, p. 303320. In Feldmann, R. M. and Woodburne, M. O. (eds.), Geology and Paleontology of Seymour Island, Antarctic Peninsula. Geological Society of America, Memoir 169.Google Scholar
Sieverts-Doreck, H. 1933. Jungtertiare Crinoiden von Seran und Borneo. Neues Jahrbuch für Mineralogie, Geologie, und Paläontologie, 69:145168.Google Scholar
Sieverts-Doreck, H. 1952. P. 614. In Moore, R. C., Lalicker, C. G., and Fischer, A. G., Invertebrate Fossils. McGraw-Hill, New York.Google Scholar
Taylor, P. D. 1983. Ailsacrinus gen. nov., an aberrant millericrinid from the Middle Jurassic of Great Britain. Bulletin of the British Museum (Natural History), Geology, 37:3777.Google Scholar
Trautman, T. A., and Elliot, D. H. 1976. Sedimentology and petrology of Lower Tertiary deltaic sediments of Seymour Island, Antarctic Peninsula. Geological Society of America, Abstracts with Programs, 8:11441145.Google Scholar
Wei, W. 1991. Evidence for an earliest Oligocene abrupt cooling in the surface waters of the Southern Ocean. Geology, 19:780783.Google Scholar
Wiedman, L. A., and Feldmann, R. M. 1988. Ichnofossils, tubiform body fossils, and depositional environment of the La Meseta Formation (Eocene) of Antarctica, p. 489498. In Feldmann, R. M. and Woodburne, M. O. (eds.), Geology and Paleontology of Seymour Island, Antarctic Peninsula. Geological Society of America, Memoir 169.Google Scholar
Zinsmeister, W. J. 1982. Late Cretaceous–Early Tertiary molluscan biogeography of the southern circum-Pacific. Journal of Paleontology, 56:84102.Google Scholar
Zinsmeister, W. J., and Feldmann, R. M. 1984. Cenozoic high latitude heterochroneity of Southern Hemisphere marine faunas. Science, 224:281283.Google Scholar
Zittel, K. A. von, 1879. Handbuch der Palaeontologie, Band 1, Palaeozoologie, Abt. 1, R. Oldenbourg, München and Leipzig, 765 p.Google Scholar