Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T12:56:12.509Z Has data issue: false hasContentIssue false

The effect of external and internal fossil calibrations on the avian evolutionary timescale

Published online by Cambridge University Press:  20 May 2016

Marcel van Tuinen
Affiliation:
1Department of Biological Sciences, Stanford University, California 94305
S. Blair Hedges
Affiliation:
2NASA Astrobiology Institute and Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park 16802-5301

Abstract

Molecular clocks can provide insights into the evolutionary timescale of groups with unusually biased or fragmentary fossil records, such as birds. In those cases, it is advantageous to establish internal anchor points—molecular time estimates—using the best external fossil calibrations. In turn, those anchor points can be used as calibrations for more detailed time estimation within the group under study. This method also avoids the inherent problems in drawing conclusions about the evolution of a group based on data tied to the poor fossil record of that same group. The galliform-anseriform divergence (∼90 million years ago) is an example of such an ideal anchor point for molecular clock analyses in birds.

Type
Selected Papers from the Sixth North American Paleontological Convention
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archibald, J. D. 1996. Fossil evidence for a Late Cretaceous origin of “hoofed” mammals. Science, 272:11501153.CrossRefGoogle ScholarPubMed
Archibald, J. D., Averianov, A. O., and Ekdale, E. G. 2001. Late Cretaceous relatives of rabbits, rodents and other extant eutherian mammals. Nature, 414:6265.Google Scholar
Benton, M. J. 1993. The Fossil Record 2. Chapman and Hall, London.Google Scholar
Benton, M. J. 1999. Early origins of modern birds and mammals: molecules vs. morphology. Bioessays, 21:10431051.Google Scholar
Boles, W. E. 1992. Revision of Dromaius Gidju Patterson and Rich 1987 from Riversleigh, northwestern Queensland, Australia, with a reassesment of its generic position. Natural History Museum of LA County Science Series, 36:195208.Google Scholar
Bromham, L. D., Rambaut, A., Hendy, M. D., and Penny, D. 2000. The power of relative rate tests depends on the data. Journal of Molecular Evolution, 50:296301.Google Scholar
Chatterjee, S. 1989. The oldest antarctic bird. Journal of Vertebrate Paleontology, 16a.Google Scholar
Chatterjee, S. 1997. The Rise of Birds. The Johns Hopkins University Press, Washington, D.C., 312 pp.Google Scholar
Chiappe, L. M. 1995. The first 85 Million years of avian evolution. Naturem, 378:349355.Google Scholar
Chiappe, L. M. 1996. Early avian evolution in the Southern Hemisphere: the fossil record of birds in the Mesozoic of Gondwana. Memoirs of the Queensland Museum, 39:533556.Google Scholar
Chiappe, L. M. 2001. Phylogenetic relationships among basal birds, p. 125142. In Gauthier, J., and Gall, L. F. (eds.), New Perspectives on the Origin and Early Evolution of Birds. Proceedings of the international symposium in honor of John H. Ostrom, Yale University, 1999, Special Publication Peabody Museum of Natural History, New Haven.Google Scholar
Cooper, A., and Penny, D. 1997. Mass survival of birds across the K-T boundary: molecular evidence. Science, 275:11091113.Google Scholar
Cooper, A., Lalueza-Fox, C., Anderson, S., Rambaut, A., Austin, J., and Ward, R. 2001. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature, 409:704707.CrossRefGoogle ScholarPubMed
Cracraft, J. 1973. Continental drift, paleoclimatology, and the evolution and biogeography of birds. Journal of Zoology London, 169:455545.CrossRefGoogle Scholar
Cracraft, J. 1988. The major clades of birds, p. 339361. In Benton, M. J. (ed.), The Phylogeny and Classification of the Tetrapods. Clarendon Press, Oxford.Google Scholar
Cracraft, J. 2001. Avian evolution, Gondwana biogeography and the Cretaceous-Tertiary mass extinction event. Proceedings of the Royal Society London B. Biological Sciences, 268:459–69.Google Scholar
Cracraft, J., and Clarke, J. A. 2001. The basal clades of modern birds, p. 143156. In Gauthier, J., and Gall, L. F. (eds.), New Perspectives on the Origin and Early Evolution of Birds. Proceedings of the international symposium in honor of John H. Ostrom, Yale University, 1999, Special Publication Peabody Museum of Natural History, New Haven.Google Scholar
Dingus, L., and Rowe, T. 1998. The Mistaken Extinction. W. H. Freeman, New York, 332 p.Google Scholar
Dyke, G. J. 2001. The evolutionary radiations of modern birds: systematics and patterns of diversification. Geological Journal, 36:305315.Google Scholar
Easteal, S. 1999. Molecular evidence for the early divergence of placental mammals. Bioessays, 21:10521058.Google Scholar
Feduccia, A. 1980. The Age of Birds. Harvard University Press, Cambridge.Google Scholar
Feduccia, A. 1995. Explosive evolution in tertiary birds and mammals. Science, 267:637638.Google Scholar
Feduccia, A. 1999. The Origin and Evolution of Birds (second edition). Yale University Press, New Haven.Google Scholar
Garcia-Moreno, J., and Mindell, D. P. 2000. Rooting a phylogeny with homologous genes on opposite sex chromosomes (gametologs): a case study using avian CHD. Molecular Biology and Evolution, 17:1826–32.Google Scholar
Groth, J. G., and Barrowclough, G. F. 1999. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Molecular Phylogenetics and Evolution, 12:115123.Google Scholar
Haddrath, O., and Baker, A. J. 2001. Complete mitochondrial DNA genome sequences of extinct birds: ratite phylogenetics and the vicariance biogeography hypothesis. Proceedings of the Royal Society London B. Biological Sciences, 268:939–45.Google Scholar
Härlid, A., and Arnason, U. 1999. Analyses of mitochondrial DNA nest ratite birds within the Neognathae: supporting a neotenous origin of ratite morphological characters. Proceedings of the Royal Society London B. Biological Sciences, 266:305309.Google Scholar
Härlid, A., Janke, A., and Arnason, U. 1997. The mtDNA sequence of the ostrich and the divergence between paleognathous and neognathous birds. Molecular Biology and Evolution, 14:754–76.CrossRefGoogle ScholarPubMed
Härlid, A., Janke, A., and Arnason, U. 1998. The complete mitochondrial genome of Rhea americana and early avian divergences. Journal of Molecular Evolution, 46:669679.Google Scholar
Hedges, S. B. 2003. Molecular clocks and a biological trigger for the Neoproterozoic snowball earths and Cambrian explosion, In Donoghue, P., and Smith, P., (eds.), Telling Evolutionary Time: Molecular Clocks and the Fossil Record. Taylor & Francis, London.Google Scholar
Hedges, S. B., Parker, P. H., Sibley, C. G., and Kumar, S. 1996. Continental breakup and the ordinal diversification of birds and mammals. Nature, 381:226229.Google Scholar
Helm-Bychowski, K. M., and Wilson, A. C. 1986. Rates of nuclear-DNA evolution in pheasant-like birds: evidence from restriction maps, Proceedings of the National Academy of Sciences USA, 83:688692.Google Scholar
Ho, C. Y.-K., Prager, E., Wilson, A. C., Osuga, D. T., and Feeney, R. E. 1976. Penguin evolution: comparisons demonstrate phylogenetic relationship to flying aquatic birds. Journal of Molecular Evolution, 8:271282.Google Scholar
Hope, S. 2002. The Mesozoic record of Neornithes (modern birds). In Chiappe, L. M., and Witmer, L. (eds.), Over the Heads of the Dinosaurs. University of California Press, Berkeley.Google Scholar
Krajewski, C., and King, D. G. 1996. Molecular divergence and phylogeny: rates and patterns of cytochrome b evolution in cranes. Molecular Biology and Evolution, 13:2130.CrossRefGoogle ScholarPubMed
Kumar, S., and Hedges, S. B. 1998. A molecular timescale for vertebrate evolution. Nature, 392:917920.Google Scholar
Kurochkin, E. N. 1995. Synopsis of Mesozoic birds and early evolution of class Aves. Archaeopteryx, 13:4766.Google Scholar
Lambrecht, K. 1929. Neogaeornis wetzeli n. g. n. sp., der erste Kreidevogel der suedlichen Hemisphaere. Palaeontologische Zeitschrift, 11:121129.Google Scholar
Livezey, B. C. 1997. A phylogenetic analysis of basal Anseriformes, the fossil Presbyornis, and the interordinal relationships of waterfowl. Zoological Journal of the Linnean Society, 121:361428.Google Scholar
Miyaki, C. Y., Matioli, S. R., Burke, T., and Wajntal, A. 1998. Parrot evolution and paleogeographical events: mitochondrial DNA evidence. Molecular Biology and Evolution, 15:544551.Google Scholar
Norell, M. A., and Clarke, J. A. 2001. Fossil that fills a critical gap in avian evolution. Nature, 409:181184.Google Scholar
Olson, S. 1985. The fossil record of birds, p. 80238. In Farner, D., King, J. R., and Parkes, K. C. (eds.), Avian Biology. Academic Press, London.Google Scholar
Olson, S. 1992. Neogaeornis wetzeli Lambrecht, a Cretaceous loon from Chile (Aves: Gaviidae). Journal of Vertebrate Paleontology, 12:122124.Google Scholar
Padian, K., and Chiappe, L. M. 1998. The origin and early evolution of birds. Biological Reviews, 73:142.Google Scholar
Prager, E. M., and Wilson, A. C. 1976. Congruency of phylogenies derived from different proteins: a molecular analysis of the phylogenetic position of cracid birds. Journal of Molecular Evolution, 9:4557.Google Scholar
Prager, E. M., and Wilson, A. C. 1980. Phylogenetic relationships and rates of evolution in birds. Proceedings of the 17th International Ornithological Congress, 12091214.Google Scholar
Prager, E. M., Wilson, A. C., Osuga, D. T., and Feeney, R. E. 1976. Evolution of flightless land birds on southern continents: transferrin comparison shows monophyletic origin of ratites. Journal of Molecular Evolution, 8:283294.CrossRefGoogle ScholarPubMed
Prager, E. M., Brush, A. H., Nolan, R. A., Nakanishi, M., and Wilson, A. C. 1974. Slow evolution of transferrin and albumin in birds according to micro-complement fixation analysis. Journal of Molecular Evolution, 3:243262.Google Scholar
Schubart, C. D., Diesel, R., and Hedges, S. B. 1998. Rapid evolution to terrestrial life in Jamaican crabs. Nature, 393:363365.CrossRefGoogle Scholar
Shields, G. F., and Wilson, A. C. 1987. Calibration of mitochondrial DNA evolution in geese. Journal of Molecular Evolution, 24:212217.Google Scholar
Sibley, C. G., and Ahlquist, J. 1990. Phylogeny and Classification of Birds. Yale University Press, New Haven, Connecticut.Google Scholar
Smith, A. B., and Peterson, K. J. 2002. Dating the time of origin of major clades: molecular clocks and the fossil record. Annual Review of Earth and Planetary Sciences, 30:6588.Google Scholar
Stidham, T. A. 1998a. A lower jaw from a Cretaceous parrot. Nature, 39:2930.Google Scholar
Stidham, T. A. 1998b. Phylogenetic and ecological diversification of waterfowl (Anseriformes) in the Late Cretaceous and Paleogene. Journal of Vertebrate Paleontology, 80A.Google Scholar
Takezaki, N., Rzhetsky, A., and Nei, M. 1995. Phylogenetic test of the molecular clock and linearized trees. Molecular Biology and Evolution, 12:823–33.Google ScholarPubMed
van Tuinen, M., and Dyke, G. J. 2003. Calibration of galliform molecular clocks using multiple fossils and genetic partitions. Molecular Phylogenetics and Evolution.Google Scholar
van Tuinen, M., and Hedges, S. B. 2001. Calibration of avian molecular clocks. Molecular Biology and Evolution, 18:206213.Google Scholar
van Tuinen, M., Sibley, C. G., and Hedges, S. B. 1999. Molecular evidence for the early history of modern birds. Journal of Vertebrate Paleontology, 19:81A82A.Google Scholar
van Tuinen, M., Sibley, C. G., and Hedges, S. B. 2000. The early history of modern birds inferred from DNA sequence of mitochondrial and nuclear ribosomal genes. Molecular Biology and Evolution, 17:451457.CrossRefGoogle Scholar
van Tuinen, M., Butvill, D. B., Kirsch, J. A. W., and Hedges, S. B. 2001. Convergence and divergence in the evolution of aquatic birds. Proceedings of the Royal Society London B. Biological Sciences, 268:1345–50.Google Scholar
Waddell, P. J., Cao, Y., Hasegawa, M., and Mindell, D. P. 1999. Assessing the Cretaceous superordinal divergence times within birds and placental mammals by using whole mitochondrial protein sequences and an extended statistical framework. Systematic Biology, 48:119137.Google Scholar
Wilson, A. C. 1986. Timescale for bird evolution. Proceedings of the Nineteenth International Ornithological Congress, 19121917.Google Scholar
Wyles, J. S., Kunkel, J. G., and Wilson, A. C. 1983. Birds, behavior, and anatomical evolution. Proceedings of the National Academy of Sciences USA, 80:43944397.Google Scholar