Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T02:05:27.033Z Has data issue: false hasContentIssue false

Early Tithonian serpulid-dominated cavity-dwelling fauna, and the recruitment pattern of the serpulid larvae

Published online by Cambridge University Press:  20 May 2016

Ján Schlögl
Affiliation:
1Department of Geology and Paleontology, Faculty of Sciences, Comenius University, Mlynska dolina, Pav. G, SK-842 15 Bratislava, Slovakia,
Jozef Michalik
Affiliation:
2Geological Institute of Slovak Academy of Sciences, Dubravska 9, P.O. Box 106, SK-840 05 Bratislava, Slovakia,
Kamil Zágorŝek
Affiliation:
3National Museum, Václavské námêstí 68, CZ-115 79, Praha 1, Czech Republic,
François Atrops
Affiliation:
4Centre des Sciences de la Terre, Université Claude Bernard Lyon1, 27-43 Bd 11 Novembre, F-69 622 Villeurbanne, France,

Abstract

A Lower Tithonian cavity-dwelling community from pelagic carbonate platform deposits of the Czorsztyn Unit, Western Carpathians, represents a succession of mostly solitary coelobite organisms, dominated by scleractinian corals and small-sized serpulids during the initial recruitment stage, and by serpulids during the following recruitment stages. These bioconstructors were accompanied with other suspension feeders: thecideidine brachiopods, oysters, bryozoans, sponges, crinoids and sessile foraminifers. The boundary between the first and the second recruitment stage represents an interval of aggregate growth interruption, when a thin sheet of cyclostome bryozoans developed. Corals and serpulids Neovermilia and Vermiliopsis are primary bioconstructors; all other associated organisms profited from the free spaces between the serpulid tubes. The aggregates were already bioeroded, mineralized and encrusted during their growth. Serpulid larvae show a special recruitment pattern. Their tubes were observed attached on the inner surfaces of adult serpulid tubes only. Possible causes of such a larval behaviour involve several physical, biological or chemical factors. Except for the first recruitment stage, the rest of the succession seems to be physically controlled by the gradual infilling of cavities.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubrecht, R. and Kozur, H. 1995. Pokornyopsis (Ostracoda) from the submarine fissure fillings and cavities in the Late Jurassic of Czorsztyn Unit and the possible origin of the Recent anchialine faunas. Neues Jahrbuch fur Geologie und Paläontologie Abhandlungen, 196(1): 117.Google Scholar
Aubrecht, R., Krobicki, M., Sýkora, M., Mišík, M., Boorová, D., Schlögl, J., Šamajová, J., and Golonka, J. 2006. Early Cretaceous hiatus in the Czorsztyn Succession (Pieniny Klippen Belt, Western Carpathians): Submarine erosion or emersion? Annales Societatis Geologorum Poloniae, 76:161196.Google Scholar
Allouc, J. and Harmelin, J.-G. 2001. Les dépôts denduits manganoferrifères en environnement marin littoral. Lexemple de grottes sous-marines en Méditerranée nord-occidentale. Bulletin de la Societé géologique de France, 172(6):765778.Google Scholar
Begon, M., Harper, J. L., and Townsend, C. R. 1990. Ecology: Individuals, populations and communities (second edition). Blackwell Scientific Publications, Oxford.Google Scholar
Begon, M., Townsend, C. R., and Harper, J. L., 2006. Ecology: From individuals to ecosystems, 4th ed.Blackwell Publishing, Malden, Oxford, Victoria.Google Scholar
Bhaud, M. 1998. The spreading potential of polychaete larvae does not predict adult distributions; consequences for conditions of recruitment. Hydrobiologia, 375-376:3547.Google Scholar
Bianchi, C. N. and Morri, C. 2001. The battle is not to the strong: serpulid reefs in the Lagoon of Orbetello (Tuscany, Italy). Estuarine, Coastal and Shelf Science, 53:215220.Google Scholar
Bianchi, C. N., Aliani, S., and Morri, C. 1995. Present-day serpulid reefs, with references to an ongoing research project on Ficopomatus enigmaticus, p. 6165. In Lathuiliere, B. and Geister, J. (eds.), Coral reefs in the past, present and future. Publications du Service géologique du Luxembourg, 24.Google Scholar
Bosence, D. W. J. 1979. The factors leading to aggregation and reef formation in Serpula vermicularis L., p. 299318. In Larwood, G. and Rosen, B. R. (eds.), Biology and systematics of colonial organisms. Systematics Association Special Volume 11, Academic Press, London, New York.Google Scholar
Cha, J.-H. and Bhaud, M. 2000. A new experimental approach to assess settlement conditions in tube-building polychaetes; biological implications. Oceanologica Acta, 23(4):443452.Google Scholar
Chapman, N. D., Moore, C. G., Harries, D. B., and Lyndon, A. R. 2007. Recruitment patterns of Serpula vermicularis L. (Polychaeta, Serpulidae) in Loch Creran, Scotland. Estuarine, Coastal and Shelf Science, 73:598606.Google Scholar
Climaco, A., Boni, M., Iannace, A., and Zamparelli, V. 1997. Platform margins, microbial/serpulids bioconstructions and slope-to-basin sediments in the Upper Triassic of the “Verbicaro Unit” (Lucania and Calabria, Southern Italy). Facies, 36:3756.Google Scholar
Cooper, P. 1988. Ecological successions in Phanerozoic reef ecosystems: Is it real? Palaios, 3:136152.Google Scholar
Dean, R. L. and Connell, J. H. 1987. Marine invertebrates in an algal succession. I. Variation in abundance and diversity with succession. Journal of Experimental Marine Biology and Ecology, 109:195215.Google Scholar
Fürsich, F. T. and Palmer, T. J. 1975. Open crustacean burrows associated with hardgrounds in the Jurassic of the Cotswolds, England. Proceedings of Geologists Association, 86:171181.Google Scholar
Fürsich, F. T., Oschmann, W., Singh, I. B., and Jaitly, A. K. 1992. Hard-grounds, reworked concretion levels and condensed horizons in the Jurassic of western India: Their significance for basin analysis. Journal of the Geological Society, London, 149:313331.Google Scholar
Harder, T., Lam, C., and Qian, P.-Y. 2002. Induction of larval settlement in the polychaete Hydroides elegans by marine biofilms: An investigation of monospecific diatom films as settlement cues. Marine Ecology Progress series, 229:105112.Google Scholar
Harmelin, J.-G. 1986. Patterns in the distribution of bryozoans in the Mediterranean marine caves. Stygologia, 2(1/2): 1025.Google Scholar
Harmelin, J.-G., Vacelet, J., and Vasseur, P. 1985. Les grottes sous-marines obscures: un milieu extrême et un remarquable biotope refuge. Téthys, 11(3-4):214229.Google Scholar
Houša, V. and Nekvasilová, O. 1987. Epifauna cemented to corals and bivalves from the Tithonian of Štramberg (Czechoslovakia). Časopis pro mineralogii a geologii, 32(1):4758.Google Scholar
Hove, H. A. ten. 1979. Different causes of mass occurrences in serpulids, p. 281298. In Larwood, G. and Rosen, B. R. (eds.), Biology and systematics of colonial organisms. Systematics Association Special Volume 11, Academic Press, London, New York.Google Scholar
Hove, H. A. ten and Van den Hurk, P. 1993. A review of recent and fossil serpulid “reefs”; actuopalaeontology and the Upper Malm serpulid limestones in NW Germany. Geologie en Mijnbouw, 72:2367.Google Scholar
Jackson, J. B. C. 1977. Competition on marine hard substrata: The adaptive significance of solitary and colonial strategies. American Naturalist, 111: 743769.Google Scholar
Johnson, M. E. 1977. Succession and replacement in the development of Silurian brachiopod populations. Lethaia, 10:8393.Google Scholar
Kidwell, S. M. and Bosence, D. J. 1991. Taphonomy and time-averaging of marine shelly faunas, p. 116209. In Allison, P. A. and Briggs, D. E. G. (eds.), Taphonomy: Releasing the data locked in the fossil record. Topics in Geobiology, Volume 9, Plenum Press, New York.Google Scholar
Kobluk, D. R. 1988. Cryptic faunas in reefs: Ecology and geologic importance. Palaios, 3:379390.Google Scholar
Lau, S. C. K. and Qian, P.-Y. 2001. Larval settlement in the serpulid polychaete Hydroides elegans in response to bacterial films: An investigation of the nature of putative larval settlement cue. Marine Biology, 138:321328.Google Scholar
Lukeneder, A. and Harzhauser, M. 2003. Olcostephanus guebhardi as cryptic habitat for an early Cretaceous coelobite community (Valanginian, Northern Calcareous Alps, Austria). Cretaceous Research, 24:477485.Google Scholar
Martire, L. 1992. Sequence stratigraphy and condensed pelagic sediments. An example from the Rosso Ammonitico Veronese, northeastern Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 94:169191.Google Scholar
McCall, P. L. and Tevesz, M. J. S. 1983. Soft-bottom succession and the fossil record, p. 157194. In Tevesz, M. J. S. and McCall, P. L. (eds.), Biotic interactions in recent and fossil benthic communities. Plenum, New York.Google Scholar
Miller, W. III, 1986. Paleoecology of benthic community replacement. Lethaia, 19:225234.CrossRefGoogle Scholar
Miller, W. III 2001. What's in the name? Ecologic entities and the marine paleoecologic record, p. 1533. In Allmon, W. D. and Bottjer, D. J. (eds.), Evolutionary Paleoecology: The ecological context of macroevolutionary change. Columbia University Press, New York, Chichester, West Sussex.Google Scholar
Odum, E. P. 1969. The strategy of ecosystem development. Science, 164:596604.Google Scholar
Palmer, T. J. 1982. Cambrian to Cretaceous changes in hardground communities. Lethaia, 15:309323.Google Scholar
Palmer, T. J. and Fürsich, F. T. 1974. The ecology of a Middle Jurassic hardground and crevice fauna. Palaeontology, 17(3):507524.Google Scholar
Palmer, T. J. and Fürsich, F. T. 1981. Ecology of sponge reefs from the Upper Bathonian of Normandy. Palaeontology, 24(1): 123.Google Scholar
Palmer, T. J. and Palmer, C. D. 1977. Faunal distribution and colonization strategy in a Middle Ordovician hardground community. Lethaia, 10:179199.Google Scholar
Palmer, T. J. and Wilson, M. A. 1990. Growth of ferruginous oncoliths in the Bajocian (Middle Jurassic) of Europe. Terra Nova, 2:142147.Google Scholar
Pawlik, J. R. 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanography and Marine Biology: An Annual Review, 30: 273335.Google Scholar
Pawlik, J. R., Butman, C. A., and Strczak, V. R. 1991. Hydrodynamic Facilitation of gregarious settlement of a reef-building tube worm. Science, 251:421424.Google Scholar
Rasmussen, K. A. and Brett, C. E. 1985. Taphonomy of Holocene cryptic biotas from St. Croix, Virgin Islands: Information loss and preservational biases. Geology, 13:551553.Google Scholar
Reháková, D. 2000. Evolution and distribution of the Late Jurassic and Early Cretaceous calcareous dinoflagellates recorded in the Western Carpathian pelagic carbonate facies. Mineralia Slovaca, 32:7988.Google Scholar
Rojkovič, I., Aubrecht, R., and Mišík, M. 2003. Mineral and chemical composition of manganese hardgrounds in Jurassic limestones of the Western Carpathians. Geologica Carpathica, 54(5):317328.Google Scholar
Rollins, H. B., Carothers, M., and Donahue, J. 1979. Transgression, regression and fossil community succession. Lethaia, 12:89104.Google Scholar
Scheltema, R. S., Wiliams, M. A., Shaw, M. A., and Loudon, C. 1981. Gregarious settlement by the larvae of Hydroides dianthus (Polychaeta: Serpulidae). Marine Ecology Progress Series, 5:6974.Google Scholar
Schlögl, J. 2002. Sedimentology and biostratigraphy of the “ammonitico rosso” deposits of the Czosztyn Limestone Formation, Czorsztyn Unit, Pieniny Klippen Belt (Western Carpathians, Slovakia). Unpublished Ph.D. dissertation, Comenius University, Bratislava, 196 p. (In Slovak)Google Scholar
Schlögl, J., Tomašových, A., and Aubrecht, R. 2006. Stop B3.5—Vršatec Klippen-Czorsztyn Succession (Bajocian-Berriasian); Middle Jurassic biohermal limestones; palaeomagnetic interpretations, p. 8992. In Wierzbowski, A. et al. (eds.), Jurassic of Poland and adjacent Slovakian Carpathians, Field trip guidebook of 7th International Congress on the Jurassic System, 6-18 September 2006 Krakow, Poland.Google Scholar
Taylor, P. D. and Palmer, T. J. 1994. Submarine caves in a Jurassic reef (La Rochelle, France) and the evolution of cave biotas. Naturwissenschaften, 81:357360.Google Scholar
Taylor, P. D. and Vinn, O. 2006. Convergent morphology in small spiral worm tubes (“Spirorbis”) and its palaeoenvironmental implication. Journal of the Geological Society, London, 163:225228.Google Scholar
Taylor, P. D. and Wilson, M. A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews, 64(1-2): 1103.CrossRefGoogle Scholar
Toonen, R. J. and Pawlik, J. R. 1996. Settlement of the tube worm Hydroides dianthus (Polychaeta: Serpulidae): Cues for gregarious settlement. Marine Biology, 126:725733.Google Scholar
Toonen, R. J. and Pawlik, J. R. 2001. Settlement of the gregarious tube worm Hydroides dianthus (Polychaeta: Serpulidae). I. Gregarious and non-gregarious settlement. Marine Ecology Progress series, 224:103114.Google Scholar
Toscano, F. and Raspini, A. 2005. Epilithozoan fauna associated with ferromanganese crustgrounds on the continental slope segment between Capri and Li Galli Islands (Bay o Salerno, Northern Tyrrhenian Sea, Italy). Facies, 50:427441.Google Scholar
Walker, K. R. and Alberstadt, L. P. 1975. Ecological succession as an aspect of structure in fossil communities. Paleobiology, 1:238257.Google Scholar
Wierzbowski, A., Jaworska, M., and Krobicki, M. 1999. Jurassic (Upper Bajocian-lowest Oxfordian) ammonitico rosso facies in the Pieniny Klippen Belt, Carpathians, Poland: Its fauna, microfacies and sedimentary environment. Studia Geologica Polonica, 115:774.Google Scholar
Wierzbowski, A., Aubrecht, R., Krobicki, M., Matyja, B. A., and Schlögl, J. 2004. Stratigraphy and palaeogeographic position of the Jurassic Czertezic Succession, Pieniny Klippen Belt (Western Carpathians) of Poland and Eastern Slovakia. Annales Societatis Geologorum Poloniae, 74: 237256.Google Scholar
Wilson, M. A. 1986. Coelobites and spatial refuges in a Lower Cretaceous cobble-dwelling hardground fauna. Palaeontology, 29(4):691703.Google Scholar
Wilson, M. A. 1998. Succession in a Jurassic marine cavity community and the evolution of cryptic marine faunas. Geology, 26(4):379381.Google Scholar
Wilson, M. A. and Taylor, P. D. 2001. Palaeoecology of hard substrate faunas from the Cretaceous Qahlah Formation of the Oman Mountains. Palaeontology, 44(1):2141.Google Scholar