Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T21:06:53.901Z Has data issue: false hasContentIssue false

Early Ordovician mitrates and a possible solute (Echinodermata) from the western United States

Published online by Cambridge University Press:  20 May 2016

Colin D. Sumrall
Affiliation:
Department of Earth and Planetary Sciences, University of Tennessee, Knoxville 37996-1410, USA,
James Sprinkle
Affiliation:
Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin 78712-0254, USA,
Thomas E. Guensburg
Affiliation:
Physical Science Division, Rock Valley College, Rockford, Illinois 61114, USA,
Benjamin F. Dattilo
Affiliation:
Department of Geosciences, Indiana University–Purdue University Fort Wayne, Fort Wayne, Indiana 46805, USA,

Abstract

Two new kirkocystid mitrate stylophorans (Echinodermata, Homalozoa) and a new possible solute (Echinodermata, Homalozoa) are described from the Early Ordovician of the western United States. The mitrates are among the earliest members of their clade to appear near the beginning of the Ordovician Radiation. Anatifopsis ninemilensis new species comes from the Ninemile Shale in central Nevada and the McKelligon Canyon Formation in west Texas. Anatifopsis fillmorensis new species comes from the middle Fillmore Formation in western Utah and a Ninemile Shale equivalent limestone bed in southern Nevada. The possible solute Drepanocystis dubius new genus new species from the lower Wah Wah Limestone in western Utah, shows unusual morphology with an elongate theca and a long arm shaped like a sickle.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrande, J. 1872. Systême silurien du centre de la Bohême. Supplément au. volume 1. Trilobites, crustacés divers et poissons. Rivnác, Prague, 647 p.Google Scholar
Blake, D. B. and Guensburg, T. E. 2005. Implications of a new Early Ordovician asteroid (Echinodermata) for the phylogeny of Asterozoans. Journal of Paleontology, 79:395399.Google Scholar
Blake, D. B., Guensburg, T. E., Sprinkle, J., and Sumrall, C. D. 2007. A new, phylogenetically significant Early Ordovician asteroid (Echinodermata). Journal of Paleontology, 81:12571265.Google Scholar
Caster, K. E. 1952. Concerning Enoploura of the Upper Ordovician and its relation to other carpoid Echinodermata. Bulletins of American Paleontology, 34:556.Google Scholar
David, B., Lefebvre, B., Mooi, R., and Parsley, R. L. 2000. Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology, 26:529555.Google Scholar
Gill, E. D. and Caster, K. E. 1960. Carpoid echinoderms from the Silurian and Devonian of Australia. Bulletins of American Paleontology, 41:743.Google Scholar
Guensburg, T. E. 2010. Alphacrinus new genus and origin of the disparid clade. Journal of Paleontology, 84:12091216.CrossRefGoogle Scholar
Guensburg, T. E. and Sprinkle, J. 1992. Rise of echinoderms in the Paleozoic Evolutionary Fauna: significance of paleoenvironmental controls. Geology, 20:407410.Google Scholar
Guensburg, T. E. and Sprinkle, J. 1994. Revised phylogeny and functional interpretation of the Edrioasteroidea based on new taxa from the Early and Middle Ordovician of western Utah. Fieldiana (Geology), N. S., 29:143.Google Scholar
Guensburg, T. E. and Sprinkle, J. 2000. (2001). Ecologic radiation of Cambro–Ordovician echinoderms, p. 428444. InZhuravlev, A. Y. and Riding, R.(eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Guensburg, T. E. and Sprinkle, J. 2001. Earliest crinoids: new evidence for the origin of the dominant Paleozoic echinoderms. Geology, 29:131134.Google Scholar
Guensburg, T. E. and Sprinkle, J. 2003. The oldest known crinoids (Early Ordovician, Utah) and a new crinoid plate homology system. Bulletins of American Paleontology, 364:143.Google Scholar
Hintze, L. F. 1973. Lower and Middle Ordovician stratigraphic sections in the Ibex area, Millard, County, Utah. Brigham Young University Geology Studies, 20:336.Google Scholar
Jaekel, O. 1901. Über Carpoideen: eine neus Klasse von Pelmatozoen. Zeitschrift der deutschen geologischen Gesellschaft, 52:661677.Google Scholar
Jaekel, O. 1918. Phylogenie und system der Pelmatozoen. Paläontologische Zeitschrift, 3:1128.Google Scholar
Jefferies, R. P. S. 1973. The Ordovician fossil Lagynocystis pyramidalis (Barrande) and the ancestry of Amphioxus. Philosophical Transactions of the Royal Society, Series B, 265:409469.Google Scholar
Jefferies, R. P. S. 1981. In defence of the Calcichordates. Zoological Journal of the Linnean Society, 73:351396.CrossRefGoogle Scholar
Jefferies, R. P. S. 1984. Locomotion, shape, ornament, and external ontogeny in some mitrate calcichordates. Journal of Vertebrate Paleontology, 4:292319.Google Scholar
Jefferies, R. P. S. 1986. The Ancestry of the Vertebrates. British Museum (Natural History), London, 376 p.Google Scholar
Jefferies, R. P. S. 1999. Which way is up in mitrates? – Flat surface up, p. 550. InCandia Carnevali, M. D. and Bonasoro, F.(eds.), Echinoderm Research 1998. A. A. Balkema, Rotterdam.Google Scholar
Kobayashi, T. 1960. The Cambro–Ordivician formations and faunas of South Korea. Part 6. Palaeontology 5. Journal of the Faculty of Science. University of Tokyo, Section 2, 12:217275.Google Scholar
Kolata, D., Frest, T. J., and Mapes, R. H. 1991. The youngest carpoid: occurrence, affinities and life mode of a Pennsylvanian (Morrowan) mitrate from Oklahoma. Journal of Paleontology, 65:844855.Google Scholar
Langenheim, R. L., Carss, B. W., Kennerly, J. B., McCutcheon, V. A., and Waines, R. H. 1962. Paleozoic section in Arrow Canyon Range, Clark County, Nevada. American Association of Petroleum Geologists Bulletin, 46:592609.Google Scholar
Lee, S.-B., Lefebvre, B., and Choi, D. K. 2004. Morphometric analysis of Tremodocian (earliest Ordovician) kirkocystid mitrates (Echinodermata, Stylophora) from the Taebaeksan Basin, Korea. Geobios, 37:731748.Google Scholar
Lefebvre, B. 1999. Stylophores (Cornuta, Mitrata): situation au sein du phylum des échinodermes et phylogenèse. Unpublished Ph.D. thesis, Lyon, 630 p.Google Scholar
Lefebvre, B. 2001. Some critical comments on “ankyroids”. Geobios, 34:597627.Google Scholar
Lefebvre, B. 2003. Functional morphology of stylophoran echinoderms. Palaeontology, 46:511555.Google Scholar
Lefebvre, B. 2007. Early Palaeozoic palaeobiogeography and palaeoecology of stylophoran echinoderms. Palaeogeography, Palaeoclimatology, Palaeoecology, 245:159199.Google Scholar
Lefebvre, B., Sumrall, C. D., Shroat-Lewis, R. A., Reich, M., Webster, G. D., Hunter, A. W., Nardin, E., Rozhnov, S. V., Guensburg, T. E., Touzeau, A., Noailles, F., and Sprinkle, J. In Press. Palaeobiogeography of Ordovician Echinoderms. InHarper, D. A. T. and Servais, T.(eds.), Early Palaeozoic Palaeobiogeography and Palaeogeography. Geological Society of London, Memoir.Google Scholar
Parsley, R. L. 1988. Feeding and respiration strategies in Stylophora, p. 347351. InPaul, C. R. C. and Smith, A. B.(eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Parsley, R. L. 1991. Review of selected North American mitrate stylophorans (Homalozoa: Echinodermata). Bulletins of American Paleontology, 100:157.Google Scholar
Smith, A. B. 2005. The pre-radial history of echinoderms. Geological Journal, 40:255280.Google Scholar
Sprinkle, J. 1980. An overview of the fossil record, p. 1526. InBroadhead, T. W. and Waters, J. A.(eds.), Echinoderms, Notes for a Short Course, University of Tennessee Department of Geological Sciences, Studies in Geology 3.Google Scholar
Sprinkle, J. and Guensburg, T. E. 1995. Origin of echinoderms in the Paleozoic Evolutionary Fauna: the role of substrates. Palaios, 10:437453.Google Scholar
Sprinkle, J. and Guensburg, T. E. 1997. Appendix D—echinoderm biostratigraphy, p. 4950, and pl. 1, chart C. InRoss, R. J. Jr., Hintze, L. F., Ethington, R. L., Miller, J. F., Taylor, M. E., and Repetski, J. E.(eds.), The Ibexian, lowermost series in the North American Ordovician. U.S. Geological Survey Professional Paper 1579A.Google Scholar
Sprinkle, J. and Sumrall, C. D. 2008. New parablastoids from the western United States. University of Kansas Paleontological Contributions, New Series, 16:114.Google Scholar
Sprinkle, J., Guensburg, T. E., and Gahn, F. J. 2008. Overview of Early Ordovician crinoid diversity from the western and southwestern United States, p. 313330. InAusich, W. I. and Webster, G. D.(eds.), Echinoderm Paleobiology. Indiana University Press, Bloomington.Google Scholar
Sumrall, C. D. 1997. The role of fossils in the phylogenetic reconstruction of Echinodermata, p. 267288. InWaters, J. A. and Maples, C. G.(eds.), Paleontological Society Papers Vol. 3, Geobiology of Echinoderms. The Paleontological Society, Pittsburgh.Google Scholar
Sumrall, C. D., Sprinkle, J., and Guensburg, T. E. 2001. Comparison of flattened blastozoan echinoderms: insights from the new Early Ordovician eocrinoid Haimacystis rozhnovi. Journal of Paleontology, 75:985992.Google Scholar
Ubaghs, G. 1998. Echinodermes nouveaux du Cambrien supérieur de la Montagne Noire (France méridionale). Geobios, 31:809829.Google Scholar
Whitehouse, F. W. 1941. The Cambrian faunas of north-eastern Australia. Part 4: Early Cambrian echinoderms similar to the larval stages of recent forms. Memoirs of the Queensland Museum, 12:128.Google Scholar