Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T22:18:38.401Z Has data issue: false hasContentIssue false

Early Miocene shallow-water corals from La Guajira, Colombia: part I, Acroporidae–Montastraeidae

Published online by Cambridge University Press:  02 October 2018

Paola Flórez
Affiliation:
Departamento de Estratigrafía y Paleontología, Universidad de Granada, Campus Fuentenueva s/n 18002 Granada, Spain 〈[email protected] Corporación Geológica ARES, Calle 44A No. 53-96 Bogotá, Colombia
Paula Zapata-Ramírez
Affiliation:
Corporación Geológica ARES, Calle 44A No. 53-96 Bogotá, Colombia Escuela de Ingeniería, Grupo de Automática y Diseño A+D, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellín, Colombia 〈[email protected]
James S. Klaus
Affiliation:
Department of Marine Geosciences, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33146, USA 〈[email protected]

Abstract

We document for the first time Miocene corals from the Siamaná and Jimol formations of the Cocinetas Basin in La Guajira Peninsula, northern Colombia. This is the first of two contributions dedicated to the description and detailed illustration of morphospecies collected during two scientific expeditions (2011, 2014) to the remote region. Here we report coral morphospecies attributed to the families Acroporidae, Agathiphylliidae, Astrocoeniidae, Caryophylliidae, Diploastraeidae, Merulinidae, and Montastraeidae. Eighteen species belonging to these seven families, included in nine genera, are described. Fifteen species are assigned to established taxa, while three remain in open nomenclature. Of the species identified, only Montastraea cavernosa (Linnaeus, 1767) exists today. The coral taxa described are typical of the Oligocene–Miocene transition and were important components of shallow-water reefs in the Caribbean and Gulf of Mexico region during this period. The occurrence of Agathiphyllia spp., Antiguastrea, and Diploastrea spp. confirms the presence of these genera in the Miocene of the Southern Caribbean. Coral assemblages suggest that the La Guajira coral community thrived in calm and shallow waters.

Type
Articles
Copyright
Copyright © 2018, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert-Villanueva, E., Ferrández-Cañadell, C., Boveranal, T., and Salas, R., 2017, Larger foraminifera biostratigraphy of the early Miocene carbonate platforms of the Falcón Basin (NW Venezuela): 33rd International Meeting of Sedimentology, 16ème Congrès Français de Sédimentologie, Toulouse, France, 2017, Abstract Book, p. 29.Google Scholar
Baron-Szabo, R.C., Schafhauser, A., Götz, S., and Stinnesbeck, W., 2006, Scleractinian corals from the Cardenas Formation (Maastrichtian), San Luis Potosi, Mexico: Journal of Paleontology, v. 80, p. 10331046.Google Scholar
Bennington, J.B., and Aronson, M.F.J., 2012, Reconciling scale in paleontological and neontological data: Dimensions of time, space, and taxonomy, in Louys, J., ed., Paleontology in Ecology and Conservation: Berlin, Springer, p. 3967.Google Scholar
Blainville, H.M.D., 1830, Zoophytes, in Levrault, F.G., ed., Dictionnaire des sciences naturelles, dans lequel on traité méthodiquement des differéns êtres de la nature, considérés soit en eux-mêmes, d’après l’état actuel de nos connoissances, soit relativement a l’utilité qu’en peuvent retirer la médicine, l’agriculture, le commerce et les arts, Tome 60: Paris, Le Normat, p. 1548.Google Scholar
Bourne, G.C., 1900, The Anthozoa, in Lankester E.R., ed., A Treatise on Zoology. Part II. The Porifera and Coelenterata: London, Adam and Charles Black, p. 184.Google Scholar
Brewster-Wingard, G.L., Scott, T.M, Edwards, L.E., Weedman, S.D., and Simmons, K.R., 1997, Reinterpretation of the peninsular Florida Oligocene: An integrated stratigraphic approach: Sedimentary Geology, v. 108, p. 207228.Google Scholar
Budd, A.F., 1991, Neogene paleontology in the northern Dominican Republic 11. The family Faviidae (Anthozoa: Scleractinia). Part I. The Genera Monstastraea and Solenastrea : Bulletin of American Paleontology, v. 101, p. 183.Google Scholar
Budd, A.F., 2000, Diversity and extinction in the Cenozoic history of Caribbean reefs: Coral Reefs, v. 19, p. 2535.Google Scholar
Budd, A.F., and Johnson, K.G., 1999, Neogene paleontology in the northern Dominican Republic 19. The family Faviidae (Anthozoa: Scleractinia) Part II. The genera Caulastraea, Favia, Diploria, Thysanus, Hadrophyllia, Manicina and Colpophyllia : Bulletin of American Paleontology, v. 109, p. 583.Google Scholar
Budd, A.F., and Klaus, J.S., 2001, The origin and early evolution of the Montastraea annularis species complex (Anthozoa: Scleractinia): Journal of Paleontology, v. 75, p. 527545.Google Scholar
Budd, A.F., and Manfrino, C., 2001, Coral assemblages and reef environments in the Bahamas Drilling Project cores, in Ginsburg, R.N., ed., Subsurface Geology of a Prograding Carbonate Platform Margin, Great Bahama Bank: Results of the Bahamas Drilling Project: SEPM Special Publication, no. 70, p. 41–59.Google Scholar
Budd, A.F., and McNeill, D.F., 1998, Zooxanthellate scleractinian corals of the Bowden shell bed, Southeast Jamaica: Contributions to Tertiary and Quaternary Geology, v. 35, p. 4761.Google Scholar
Budd, A.F., and Stolarski, J., 2009, Searching for new morphological characters in the systematics of scleractinian reef corals: Comparison of septal teeth and granules between Atlantic and Pacific Mussidae: Acta Zoologica, v. 90, p. 142165.Google Scholar
Budd, A.F., and Stolarski, J., 2011, Corallite wall and septal microstructure in scleractinian reef corals: Comparison of molecular clades within the family Faviidae: Journal of Morphology, v. 272, p. 6688.Google Scholar
Budd, A.F., and Wallace, C.C., 2008, First record of the Indo-Pacific reef coral genus Isopora in the Caribbean region: Two new species from the Neogene of Curaçao, Netherlands Antilles: Palaeontology, v. 51, p. 13871401.Google Scholar
Budd, A.F., Stemann, T.A., and Stewart, R.H., 1992, Eocene Caribbean reef corals: A unique fauna from the Gatuncillo Formation of Panama: Journal of Paleontology, v. 66, p. 570594.Google Scholar
Budd, A.F., Stemann, T.A., and Johnson, K.G., 1994, Stratigraphic distributions of genera and species of Neogene to Recent Caribbean reef corals: Journal of Paleontology, v. 68, p. 951977.Google Scholar
Budd, A.F., Johnson, K.G., and Edwards, J.C., 1995, Caribbean reef coral diversity during the early to middle Miocene: An example from the Anguilla Formation: Coral Reefs, v. 14, p. 109117.Google Scholar
Budd, A.F., Johnson, K.G., and Stemann, T.A., 1996, Plio-Pleistocene turnover and extinctions in the Caribbean reef-coral fauna, in Jackson, J.B.C., Budd, A.F., and Coates, A.G., eds., Evolution and Environment in Tropical America: Chicago, University of Chicago Press, p. 168204.Google Scholar
Budd, A.F., Petersen, R.A., and McNeill, D.F., 1998, Stepwise faunal change during evolutionary turnover: A case study from the Neogene of Curaçao, Netherlands Antilles: Palaios, v. 13, p. 167185.Google Scholar
Budd, A.F., Johnson, K.G., Stemann, T.A., and Tompkins, B.H., 1999, Pliocene to Pleistocene reef coral assemblages in the Limon Group of Costa Rica: Bulletins of American Paleontology, v. 357, p. 119158.Google Scholar
Budd, A.F., Romano, S.L., Smith, N.D., and Barbeitos, M.S., 2010, Rethinking the phylogeny of scleractinian corals: A review of morphological and molecular data: Integrative and Comparative Biology, v. 50, p. 411427.Google Scholar
Budd, A.F., Klaus, J.S., and Johnson, K.G., 2011, Cenozoic diversification and extinction patterns in Caribbean reef corals: A review: Paleontological Society Papers, v. 17, p. 7993.Google Scholar
Budd, A.F., Fukami, H., Smith, N.D., and Knowlton, N., 2012, Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia): Zoological Journal of the Linnean Society, v. 166, p. 465529.Google Scholar
Cairns, S.D., 2000, A revision of the shallow-water azooxanthellate scleractinia of the Western Atlantic: Studies of the natural history in the Caribbean Region, v. 75, p. 1231.Google Scholar
Carrillo-Briceño, J.D., Argyriou, T., Zapata, V., Kindlimann, R., and Jaramillo, C., 2016, A new early Miocene (Aquitanian) Elasmobranchii assemblage from the La Guajira Peninsula, Colombia: Ameghiniana, v. 53, p. 7799.Google Scholar
Chevalier, J.P., and Beauvais, L., 1987, Ordre des scléractiniares, Chapter XI: Systématique, in Grassé, P., ed., Traité de Zoologie: Cnidaires, Anthozoaires, v. 3, p. 679753.Google Scholar
Coates, A.G., Aubry, M.P., Berggren, W.A., Collins, L.S., and Kunk, M., 2003, Early Neogene history of the Central American arc from Bocas del Toro, western Panama: Geological Society of America Bulletin, v. 115, p. 271287.Google Scholar
Cooke, C.W., 1943, Geology of the coastal plain of Georgia: U.S. Geological Survey Bulletin, v. 941, 121 p.Google Scholar
Coryell, H.N., and Ohlsen, V., 1929, Fossil corals of Porto Rico, with descriptions also of a few recent species: Scientific Survey of Porto Rico and the Virgin Islands, New York Academy of Sciences, v. 3, p. 167236.Google Scholar
Dana, J.D., 1846, Structure and Classification of Zoophytes, During the Years 1838–1842: Philadelphia, Lea and Blanchard, 132 p.Google Scholar
Defrance, J.L.M., 1826, Dictionnaire des sciences naturelles, Volume 42: Strasbourg, F.G. Levrault, 536 p.Google Scholar
Díaz, J.M., and García-Llano, C.F., 2010, Moluscos del Mioceno y del Pleistoceno de la Isla de San Andrés (Mar Caribe, Colombia) y consideraciones paleobiogeográficas: Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, v. 33, p. 93104.Google Scholar
Duchassaing, P., and Michelotti, G., 1866, Supplément au Mémoire sur les coralliaires des Antilles: Mémoire della Reale Accademia delle Scienze di Torino, Serie 2, Tom, v. 23, p. 97206.Google Scholar
Duncan, P.M., 1863, On the fossil corals of the West Indian Islands, Part I: Proceedings of the Geological Society, Quarterly Journal of the Geological Society of London, v. 19, p. 406–458.Google Scholar
Duncan, P.M., 1864, On the fossil corals of the West Indian Islands, Part II: Proceedings of the Geological Society, Quarterly Journal of the Geological Society of London, v. 20, p. 20–44.Google Scholar
Edinger, E.N., and Risk, M.J., 1994, Oligocene-Miocene extinction and geographic restriction of Caribbean corals: Roles of turbidity, temperature, and nutrients: Palaios, v. 9, p. 576598.Google Scholar
Edinger, E.N., and Risk, M.J., 1995, Preferential survivorship of brooding corals in a regional extinction: Paleobiology, v. 21, p. 200219.Google Scholar
Ehrenberg, C.G., 1834, Beiträge zur Physiologischen Kenntniss der Corallenthiere im Allgemeinen, und Besonders des Rothen Meeres, nebst einem Versuche zur Physiologischen Systematik Derselben, Volume 1: Berlin, Abhandlungen der Königlichen Akademie der Wissenschaften, p. 225380.Google Scholar
Ellis, J., and Solander, D., 1786, The Natural History of Many Curious and Uncommon Zoophytes Collected from Various Parts of the Globe: London, Benjamin White and Son, and Peter Elmsly, 206 p.Google Scholar
Foster, A.B., 1986, Neogene paleontology in the northern Dominican Republic. 3. The Family Poritidae (Anthozoa: Scleractinia): Bulletin of American Paleontology, v. 90, p. 1123.Google Scholar
Foster, A.B., 1987, Neogene paleontology in the northern Dominican Republic. 4. The Genus Stephanocoenia (Anthozoa: Scleractinia: Astrocoeniidae): Bulletin of American Paleontology, v. 93, p. 522.Google Scholar
Forsskål, P., 1775, Descriptiones Animalium, Avium, Amphibiorum, Piscium, Insectorum, Vermium, quae in Itinere Orientali Observavit Petrus Forsskål. Prof. Haun. Post Mortem Auctoris Edidit Carsten Neibuhr. Adjuncta est Materia Medica Kahirina atque Tabula Maris Rubri Geographica: Copenhagen, Hauniae, 164 p.Google Scholar
Frost, S.H., and Langenheim, R.L., 1974, Cenozoic Reef Biofacies, Tertiary Larger Foraminifera and Scleractinian Corals from Chiapas, Mexico: DeKalb, Northern Illinois University Press, 388 p.Google Scholar
Frost, S.H., and Schafersman, S., 1978, Oligocene reef community succession, Damon Mound, Texas: Gulf Coast Association of Geologic Societies, Transactions, v. 28, p. 143160.Google Scholar
Frost, S.H., and Weiss, M.P., 1979, Patch-reef communities and succession in the Oligocene of Antigua, West Indies: Geological Society of America Bulletin, v. 90, p. 612616.Google Scholar
Frost, S.H., Harbour, J.L., Beach, D.K., Realini, M.J., and Harris, P.M., 1983, Oligocene reef tract development, southwestern Puerto Rico: Sedimenta IX, University of Miami, 144 p.Google Scholar
Fukami, H., Budd, A.F., Paulay, G., Solé-Cava, A., Chen, C.A., Iwao, K., and Knowlton, N., 2004, Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals: Nature, v. 427, p. 832835.Google Scholar
Gardiner, J.S., 1904, Madreporaria. I. Introduction with notes on variation. II. Astraeidae, in Gardiner, J.S., ed., The Fauna and Geography of the Maldive and Laccadive Archipelagoes: Being the Account of the Work Carried on and of the Collections Made by an Expedition During the Years 1899 and 1900, Volume 2: Cambridge, Cambridge University Press, p. 755790.Google Scholar
Geister, J., 1975, Riffbau und geologische Entwicklungsgeschichte der Insel San Andrés (westliches Karibisches Meer, Kolumbien): Stuttgarter Beiträge zur Naturkunde, Serie B, v. 15, p. 1203.Google Scholar
Geister, J., 1983, Holozäne westindische Korallenriffe: Geomorphologie, Okologie und Fazies: Facies, v. 9, p. 173284.Google Scholar
Geister, J., 1992, Modern reef development and Cenozoic evolution of an oceanic island/reef complex: Isla de Providencia (Western Caribbean Sea, Colombia): Facies, v. 27, p. 170.Google Scholar
Greenstein, B.J., 2007, Taphonomy: Detecting critical events in fossil reef-coral assemblages, in Aronson, R.B., ed., Geological Approaches to Coral Reef Ecology, Ecological Studies 192: New York, Springer, p. 3160.Google Scholar
Haeckel, E., 1896, Systematische Phylogenie. Entwurf eines Natürlichen Systems der Organismen auf Grund ihrer Stammesgeschichte, v. 2: Berlin, Georg Reimer, 750 p.Google Scholar
Hendy, A.J.W., Jones, D.S., Moreno, F., Zapata, V., and Jaramillo, C., 2015, Neogene molluscs, shallow-marine paleoenvironments and chronostratigraphy of the Guajira Peninsula, Colombia: Swiss Journal of Paleontology, v. 134, p. 4575.Google Scholar
Huang, D., Benzoni, F., Fukami, H., Knowlton, N., Smith, N.D., and Budd, A.F., 2014, Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia): Zoological Journal of the Linnean Society, v. 171, p. 277355.Google Scholar
Jablonski, D., and Shubin, N.H., 2015, The future of the fossil record: Paleontology in the 21st century: Proceedings of the National Academy of Sciences of the United States of America, v. 112, p. 48524858.Google Scholar
James-Williamson, S.A., and Mitchell, S.F., 2012, Revised lithostratigraphy of the Coastal Group of south-eastern St. Thomas, Jamaica: Caribbean Journal of Earth Science, v. 44, p. 917.Google Scholar
James-Williamson, S.A., Mitchell, S.F., and Ramsook, R., 2014, Tectono-stratigraphic development of the Coastal Group of south-eastern Jamaica: Journal of South American Earth Sciences, v. 50, p. 4047.Google Scholar
Johnson, K.G., 2001, Middle Miocene recovery of Caribbean reef corals: New data from the Tamana Formation, Trinidad: Journal of Paleontology, v. 75, p. 513526.Google Scholar
Johnson, K.G., 2007, Reef-coral diversity in the late Oligocene Antigua Formation and temporal variation of local diversity on Caribbean Cenozoic Reefs, in Hubmann, B., and Piller, W.E., eds., Fossil Corals and Sponges. Proceedings of the 9th International Symposium on Fossil Cnidaria and Porifera: Österreichischen Akademie der Wissenschaften, Schriftenreihe der Erdwissenschaftlichen Kommissionen, v. 17, p. 471–491.Google Scholar
Johnson, K.G., and Kirby, M.X., 2006, The Emperador Limestone rediscovered: Early Miocene corals from the Culebra Formation, Panama: Journal of Paleontology, v. 80, p. 283293.Google Scholar
Johnson, K.G., Jackson, J.B.C., and Budd, A.F., 2008, Caribbean reef development was independent of coral diversity over 28 million years: Science, v. 319, p. 15211523.Google Scholar
Johnson, K.G., Sánchez-Villagra, M.R., and Aguilera, O.A., 2009, The Oligocene-Miocene transition on coral reefs in the Falcón Basin (NW Venezuela): Palaios, v. 24, p. 5969.Google Scholar
Kirby, M.X., Jones, D.S., and MacFadden, B.J., 2008, Lower Miocene stratigraphy along the Panama Canal and its bearing on the Central American Peninsula: PLoS ONE, v. 3, e2791, doi: 10.1371/journal.pone.0002791.Google Scholar
Kitahara, M.V., and Cairns, S.D., 2005, Monohedotrochus capitolii, a new genus and species of solitary azooxanthellate coral (Scleractinia, Caryophylliidae) from southern Brazil: Zoologische Mededelingen, v. 79, p. 117123.Google Scholar
Kitano, Y.F., Benzoni, F., Arrigoni, R., Shirayama, Y., Wallace, C.C., and Fukami, H., 2014, A phylogeny of the family Poritidae (Cnidaria, Scleractinia) based on molecular and morphological analyses: PLoS ONE, v. 9, doi.org/10.1371/journal.pone.0098406.Google Scholar
Klaus, J.S., and Budd, A.F., 2003, Comparison of Caribbean coral reef communities before and after Plio-Pleistocene faunal turnover: Analyses of two Dominican Republic reef sequences: Palaios, v. 18, p. 321.Google Scholar
Klaus, J.S., Budd, A.F., and McNeill, D.F., 2008, Assessing community change in Miocene to Pliocene coral assemblages of the northern Dominican Republic, in Nehm, R.H., and Budd, A.F., eds., Evolutionary Stasis and Change in the Dominican Republic Neogene: Berlin, Springer Science and Business Media B.V., p. 193224.Google Scholar
Klaus, J.S., McNeill, D.F., Budd, A.F., and Coates, A.G., 2012, Neogene reef coral assemblages of the Bocas del Toro Archipelago, Panama: The rise of Acropora palmata : Coral Reefs, v. 31, p. 191203.Google Scholar
Klaus, J.S., Meeder, J.F., McNeill, D.F., Woodhead, J.F., and Swart, P.K., 2017, Expanded Florida reef development during the mid-Pliocene warm period: Global and Planetary Change, v. 152, p. 2737.Google Scholar
Koby, F., 1890, Monographie des polypiers jurassiques de la Suisse. Neuvième et dernière partie: Mémoires de la Société Paléontologique Suisse, v. 16, p. 457582.Google Scholar
Lang, W.D., and Smith, S., 1935, Cyathophyllum caespitosum Goldfuss, and other Devonian corals considered in a revision of that species: Quarterly Journal of the Geological Society of London, v. 91, p. 538590.Google Scholar
Lamarck, J.P.B., 1816, Histoire Naturelle Des Animaux Sans Vertèbres, 2. Les polypes: Paris, Verdière, 568 p.Google Scholar
Linnaeus, C., 1758, Systema Naturae Per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis. Editio Decima Reformata, v. 2: Holmiae, Laurentii Salvii, 824 p.Google Scholar
Linnaeus, C., 1767, Systema Naturae Per Regna Tria Naturae: Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis. Editio Duodecima Reformata, v. 1: Holmiae, Laurentii Salvii, p. 5331327.Google Scholar
Lockwood, J.P., 1965, Geology of the Serranía de Jarara Area. Guajira Peninsula, Colombia [Ph.D. dissertation]: Princeton, Princeton University, 167 p.Google Scholar
López-Pérez, A., 2017, Revisiting the Cenozoic history and the origin of the Eastern Pacific coral fauna, in Glynn, P., Manzello, D.P., and Enochs, I.C., eds., Coral Reefs of the Eastern Tropical Pacific: Dordrecht, Springer, p. 3957.Google Scholar
Macellari, C.E., 1995, Cenozoic sedimentation and tectonics of the southwestern Caribbean pull-apart basin, Venezuela and Colombia, in Tankard, A.J., Suarez-Soruco, R., and Welsink H.J., eds., Petroleum Basins of South America: Tulsa, American Association of Petroleum Geologists Memoir 62, p. 757780.Google Scholar
Matthai, G., 1914, A revision of the recent colonial Astreidae possessing distinct corallites: Transactions of the Linnean Society of London, v. 17, p. 1140.Google Scholar
Milne-Edwards, H., and Haime, J., 1848, Note sur la classification de la deuxième tribu de la famille des Astréides: Académie des Sciences, Paris, Comptes Rendus, v. 27, p. 490497.Google Scholar
Mitchell, S.F., 2004, Lithostratigraphy and paleogeography of the White Limestone Group, in Donovan, S.K., ed., The Mid-Cainozoic White Limestone Group of Jamaica: Cainozoic Research, v. 3, p. 229.Google Scholar
Mitchell, S.F., 2013, Stratigraphy of the White Limestone of Jamaica: Bulletin de la Société Géologique de France, v. 184, p. 111118.Google Scholar
Montero-Serrano, J.C., Martínez, M., Riboulleau, A., Tribovillard, N., Márquez, G., and Gutiérrez-Martín, J.V., 2010, Assessment of the oil source-rock potential of the Pedregoso Formation (early Miocene) in the Falcón Basin of northwestern Venezuela: Marine and Petroleum Geology, v. 27, p. 11071118.Google Scholar
Moreno, F., et al., 2015, Revised stratigraphy of Neogene strata in the Cocinetas Basin, La Guajira, Colombia: Swiss Journal of Palaeontology, v. 134, p. 543.Google Scholar
Neil-Champagne, T.A., 2010, Oligocene coral evolution in Puerto Rico and Antigua: Analysis of Agathiphyllia, Antiguastra, and Montastraea [M.Sc. thesis]: Iowa City, University of Iowa, 92 p.Google Scholar
Ortega-Ariza, D., Franseen, E.K., Santos-Mercado, H., Ramírez-Martínez, W.R., and Core-Suárez, E.E., 2015, Strontium isotope stratigraphy for Oligocene-Miocene carbonate systems in Puerto Rico and the Dominican Republic: Implications for Caribbean processes affecting depositional history: Journal of Geology, v. 123, p. 539560.Google Scholar
Pandolfi, J.M., 2011, The paleoecology of coral reefs, in Dubinsky, Z., and Stambler, N., eds., Coral Reefs: An Ecosystem in Transition: Dordrecht, Springer, p. 1324.Google Scholar
Pandolfi, J.M., and Jackson, J.B.C., 2007, Broad-scale patterns in Pleistocene coral reef communities from the Caribbean: Implications for ecology and management, in Aronson, R.B., ed., Geological Approaches to Coral Reef Ecology: New York, Springer, p. 201236.Google Scholar
Quiroz, L., and Jaramillo, C., 2010, Stratigraphy and sedimentary environments of Miocene shallow to marginal marine deposits in the Urumaco Trough, Falcón Basin, western Venezuela, in Sánchez-Villagra, M., Aguilera, O., and Carlini, A.A., eds., Urumaco and Venezuelan Palaeontology. The Fossil Record of the Northern Neotropics: Bloomington, Indiana University Press, p. 153172.Google Scholar
Renz, O., 1960, Geología de la parte sureste de la Península de La Guajira: Memorias del III Congreso Geológico Venezolano: Boletín Geológico, Publicación Especial No. 3, p. 317–347.Google Scholar
Reuss, A.E., 1864, Die Fossilen Foraminifera, Anthozoen, und Bryozoen von Oberburg in der Steiermark: Denkschriften der Kaiserlichen Akademie der Wissenshaften, Mathematisch-Naturwissenschaftliche Classe, v. 23, p. 136.Google Scholar
Rincón, A.D., Solórzano, A., Benammi, M., Vignaud, P., and McDonald, H.G., 2014, Chronology and geology of an early Miocene mammalian assemblage in North of South America, from Cerro La Cruz (Castillo Formation), Lara State, Venezuela: Implications in the ‘changing course of Orinoco River’ hypothesis: Andean Geology, v. 41, p. 507528.Google Scholar
Robinson, E., Paytan, A., and Chien, C.T., 2017, Strontium isotope dates for the Oligocene Antigua Formation, Antigua, W.I.: Caribbean Journal of Earth Science, v. 50, p. 1118.Google Scholar
Rollins, J., 1965, Stratigraphy and structure of the Guajira Peninsula, northwestern Venezuela and northeastern Colombia: University of Nebraska Studies, v. 30, p. 11102.Google Scholar
Saunders, J.B., Jung, P., and Biju-Duval, B., 1986, Neogene paleontology in the northern Dominican Republic: 1. Field surveys, lithology, environment, and age: Bulletins of American Paleontology, v. 89, p. 179.Google Scholar
Silva-Tamayo, J.C., Lara, M.E., Nana Yobo, L., Erdal, Y.D., Sanchez, J., and Zapata-Ramírez, P.A., 2017, Tectonic and environmental factors controlling on the evolution of Oligo-Miocene shallow marine carbonate factories along a tropical SE Circum-Caribbean: Journal of South American Earth Sciences, v. 78, p. 213237.Google Scholar
Spencer, J.W., 1901, On the geological and physical development of Antigua: Quarterly Journal of the Geological Society of London, v. 57, p. 490505.Google Scholar
Stemann, T.A., 2003, Reef corals of the White Limestone Group of Jamaica, in Donovan, S.K., ed., The Mid-Cainozoic White Limestone Group of Jamaica: Cainozoic Research, v. 3, p. 83107.Google Scholar
Swanson, S.M., Karlsen, A.W., and Valentine, B.J., 2013, Geologic assessment of undiscovered oil and gas resources—Oligocene Frio and Anahuac formations, United States Gulf of Mexico coastal plain and state waters: U.S. Geological Survey Open-File Report 2013–1257, 66 p., http://dx.doi.org/10.3133/ofr20131257.Google Scholar
Teatin, P., 1991, The Siamaná Formation carbonate unit, lower Guajira sub-basin, Colombia: Its depositional setting and diagnosis [M.Sc. thesis]: Columbia, University of South Carolina, 131 p.Google Scholar
Thomas, D.J., 1972, The Tertiary geology and systematic paleontology (Phylum Mollusca) of the Guajira Peninsula, Colombia, South America [Ph.D. dissertation]: Binghamton, State University of New York at Binghamton, 138 p.Google Scholar
van Woesik, R., Houk, P., Isechal, A.L., Idechong, J.W., Victor, S., and Golbuu, Y., 2012, Climate-change refugia in the sheltered bays of Palau: Analogs of future reefs: Ecology and Evolution, v. 2, p. 24742484.Google Scholar
Vargas, G., 2004, Geología y aspectos geográficos de la Isla de San Andrés: Colombia, Geología Colombiana, v. 29, p. 7187.Google Scholar
Vaughan, T.W., 1900, The Eocene and lower Oligocene coral faunas of the United States with descriptions of a few doubtfully Cretaceous species: U.S. Geological Survey Monograph, v. 39, p. 263.Google Scholar
Vaughan, T.W., 1901, Some fossil corals from the elevated reefs of Curaçao, Aruba and Bonaire (West Indies): Sammlung Geologische Rijksmuseum, v. 2, p. 191.Google Scholar
Vaughan, T.W., 1919, Fossil corals from Central America, Cuba and Porto Rico, with an account of the American Tertiary, Pleistocene, and Recent coral reef: United States National Museum Bulletin, v. 103, p. 189524.Google Scholar
Vaughan, T.W., and Wells, J.W., 1943, Revision of the suborders, families, and genera of the Scleractinia: Geological Society of American Special Papers, 44, 363 p.Google Scholar
Verrill, A.E., 1865, Synopsis of the polyps and corals of the North Pacific Exploring Expedition, under Commodore C. Ringgold and Captain John Rodgers, U.S.N., from 1853 to 1856. Collected by Dr. Wm. Stimpson, naturalist to the expedition. With descriptions of some additional species from the west coast of North America. Part 2. Alcyonaria: Proceedings of the Essex Institute, v. 4, p. 181–196.Google Scholar
Verrill, A.E., 1901, Variations and nomenclature of Bermudian, West Indian and Brazilian reef corals, with notes on various Indo-Pacific corals: Transactions of the Connecticut Academy of Arts and Sciences, v. 11, p. 63168.Google Scholar
Verrill, A.E., 1902, Notes on corals of the genus Acropora (Madrepora Lam.) with new descriptions and figures of types, and of several new species: Transactions of the Connecticut Academy of Arts and Sciences, v. 11, p. 207266.Google Scholar
Veron, J.E.N., 2000, Corals of the World, v. 2: Townsville, Australian Institute of Marine Science, 429 p.Google Scholar
Wallace, C.C., 1999, Staghorn Corals of the World: A Revision of the Coral Genus Acropora (Scleractinia; Astrocoeniina; Acroporidae) Worldwide, With Emphasis on Morphology, Phylogeny and Biogeography: Melbourne, CSIRO, 421 p.Google Scholar
Wallace, C.C., 2012, Acroporidae of the Caribbean: Geologica Belgica, v. 15, p. 388393.Google Scholar
Wallace, C.C., Chen, C.A., Fukami, H., and Muir, P.R., 2007, Recognition of separate genera within Acropora based on new morphological, reproductive and genetic evidence from Acropora togianensis, and elevation of the subgenus Isopora Studer, 1878 to genus (Scleractinia: Astrocoeniidae; Acroporidae): Coral Reefs, v. 26, p. 231239.Google Scholar
Weisbord, N.E., 1971, Corals from the Chipola and Jackson Bluff formations of Florida: Geological Bulletin, State of Florida Department of Natural Resources, Division of Interior Resources, Bureau of Geology, v. 53, p. 1105.Google Scholar
Weisbord, N.E., 1973, New and little-known corals from the Tampa Formation of Florida: Geological Bulletin, State of Florida Department of Natural Resources, Division of Interior Resources, Bureau of Geology, v. 56, p. 1157.Google Scholar
Weisbord, N.E., 1974, Late Cenozoic corals of south Florida: Bulletins of American Paleontology, v. 66, p. 259544.Google Scholar
Weiss, M.P., 1994, Oligocene limestones of Antigua, West Indies: Neptune succeeds Vulcan: Caribbean Journal of Science, v. 30, p. 129.Google Scholar
Wells, J.W., 1936, The nomenclature and type species of some genera of recent and fossil corals: American Journal of Science, v. 31, p. 97134.Google Scholar
Wells, J.W., 1956, Scleractinia, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part F. Coelenterata: Lawrence, Geological Society of America and University of Kansas Press, p. 328440.Google Scholar
Wilson, W., Ramkissoon, M., and McLean, A., 2011, The biostratigraphic and palaeoenvironmental significance of foraminifera in the middle Miocene Upper Concord calcareous silt member (Tamana Formation) near Gasparillo West Quarry, central Trinidad: Cainozoic Research, v. 8, p. 312.Google Scholar
Woodring, W.P., 1957, Geology and Paleontology of Canal Zone and Adjoining Parts of Panama: United States Geological Survey Professional Paper 306(A), p. 1–145.Google Scholar
Yabe, H., and Sugiyama, T., 1941, Recent reef-building corals from Japan and the South Sea Islands under the Japanese Mandate II: Science Reports of the Tôhoku Imperial University, 2, p. 67–91.Google Scholar
Zapata, V., 2010, Estratigrafía de las unidades sedimentarias del Paleógeno superior y Neógeno en la Alta Guajira, Colombia [M.Sc. thesis]: Bogotá, Universidad Nacional de Colombia, 108 p.Google Scholar