Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T02:38:50.601Z Has data issue: false hasContentIssue false

The earliest endosymbiotic mineralized tubeworms from the Silurian of Podolia, Ukraine

Published online by Cambridge University Press:  20 May 2016

Olev Vinn
Affiliation:
1Institute of Geology, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia,
Mari-Ann Mõtus
Affiliation:
2Institute of Geology, Tallinn University of Technology, Ehitajate str. 5, 19086 Tallinn, Estonia,

Abstract

The earliest endosymbiotic tubeworms have been discovered within skeletons of the tabulate coral Heliolites sp. from the Silurian (Ludlow) of Podolia, Ukraine. The new tubeworm species has a maximum diameter about 1 mm, a slightly conical tube, a smooth lumen in the tube and a lamellar wall structure. The tube wall is 0.05-0.10 mm thick. The new endosymbiotic tubeworm Coralloconchus bragensis n. gen. and sp. shares zoological affinities with the tentaculitids (incertae sedis) and is assigned to the Family Cornulitidae (Tentaculita, Cornulitida).

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bandel, K. and Kiel, S. 2000. Earliest known (Campanian) members of the Vermetidae, Provannidae and Litiopidae (Cerithioidea, Gastropoda), and a discussion of their possible relationships. Universität Hamburg, Geologisch-Paläontologisches Institut, Mitteilungen, 84:209218Google Scholar
Bandel, K. and Kowalke, T. 1997. Cretaceous Laxispira and a discussion on the monophyly of vermetids and turritellids (Caenogastropoda, Mollusca). Geologica et Paleontologica, 31:257274.Google Scholar
Boucek, B. 1964. The Tentaculites of Bohemia. Publication of Czechoslovakian Academy of Sciences, Prague, 125 p.Google Scholar
Bromley, R. G. 1970. Borings as trace fossils and Entobia cretacea Portlock, as an example. In Crimes, T. P., and Harper, J. G., (eds.), Trace Fossils, 4990. Seel House Press, Liverpool.Google Scholar
Bromley, R. G. 1996. Trace fossils: Biology, taphonomy and applications, (second edition). 361 pp. Chapman and Hall, London.CrossRefGoogle Scholar
Calvin, S. 1888. On a new genus and new species of tubicolar Annelida. American Geologist, 1:2428.Google Scholar
Cherns, L. and Wright, V. P. 2000. Missing mollusks as evidence of large-scale, early skeletal aragonite dissolution in a Silurian Sea. Geology, 28: 791794.Google Scholar
Clarke, J. M. 1908. The beginning of dependent life. New York State Museum Bulletin, 121:146196.Google Scholar
Darrell, J. G. and Taylor, P. D. 1993. Macrosymbiosis in corals: A review of fossil and potentially fossilizable examples. Courier Forschunginstitut Senckenberg, 164:185198.Google Scholar
Eichwald, E. 1860. Lethaea Rossica ou Paléontologie de la Russie, décrite et figurée. 1, Seconde Section de l'ancienne Période. Stuttgart, 11041105.Google Scholar
Elias, R. J. 1986. Symbiotic relationships between worms and solitary corals in the Late Ordovician. Paleobiology, 12:3245.Google Scholar
Fisher, D. W. 1962. Small conoidal shells of uncertain affinities, p. 130143. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. W, Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Fischer, R., Pernet, B., and Reitner, J. 2000. Organomineralization of Cirratulid Annelid Tubes-Fossil and Recent Examples. Facies, 42:3550.Google Scholar
Grytsenko, V. 2007. Distribution of corals on the Silurian Podolian Shelf, p. 185198. In Hubmann, B. and Piller, W. E. (eds.), Fossil Corals and Sponges. Proceedings of the 9th International Symposium on Fossil Cnidaria and Porifera, Graz 2003. Österreichische Akademie der Wissenschaften Schriftenreiche der Erdwissenschaftlichen Kommissionen, 17.Google Scholar
Hove, H. A. ten and van den Hurk, P., 1993. A review of Recent and fossil serpulid “reefs”; actuopaleontology and the “Upper Malm” serpulid limestones in NW Germany. Geologie en Mijnbouw, 72:2367Google Scholar
Howell, B. F. 1962. Worms. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. W, Miscellanea: Conodonts, conoidal shells of uncertain affinities, worms, trace fossils and problematica, F144F177. Geological Society of America, Boulder, Colorado, and University of Kansas, Lawrence, Kansas.Google Scholar
Iten, H. van, Cox, R. S., and Mapes, R. H. 1992. New data on the morphology of Sphenothallus Hall: Implications for its affinities. Lethaia, 25: 135144.CrossRefGoogle Scholar
Iten, H. van, Fitzke, J. A., and Cox, R. S. 1996. Problematical fossil cnidarians from the upper Ordovician of the north-central USA. Palaeontology, 39:10371064.Google Scholar
Jäger, M. 2004. Serpulidae und Spirorbidae (Polychaeta sedentaria) aus Campan und Maastricht von Norddeutschland, den Niederlanden, Belgien und angrenzenden Gebieten. Geologisches Jahrbuch, A157:121249.Google Scholar
Kase, T. 1986. Mode of life of the Silurian uncoiled gastropod Semitubina sakoi n.sp. from Japan. Lethaia, 19:327337.Google Scholar
Kowalewski, M., Dulai, A., and Fürsich, F. T. 1998. A fossil record full of holes, the Phanerozoic history of drilling predation. Geology, 26:10911094.Google Scholar
McNamara, K. J. 1978. Symbiosis between gastropods and bryozoans in the late Ordovician of Cumbria, England. Lethaia, 11:2540.Google Scholar
Mörch, O. A. L. 1863. Revisio Critica Serpulidarum. Et bidrag til rørormenes naturhistorie. Naturhistorisk Tidskrift, Henrik Krøyer, København, 1(3): 347470.Google Scholar
Nicholson, H. A. 1872. On the genera Cornulites and Tentaculites and a new genus Conchicolites. American Journal of Science, 3:202206.CrossRefGoogle Scholar
Nishi, E. and Nishihira, M. 1996. Age-estimation of the Christmas Tree worm Spirobranchus giganteus (Polychaeta, Serpulidae) living in the coral skeleton from the coral-growth band of the host coral. Fisheries Sciences, 62:400403.CrossRefGoogle Scholar
Oekentorp, K. 1969. Kommensalismus bei Favositiden. Münstersche Forschungen zur Geologie und Paläontologie, 12:165217.Google Scholar
Palmer, T. J. and Wilson, M. A. 1988. Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology, 31:939949.Google Scholar
Palmer, T. J. and Wilson, M. A. 2004. Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas. Lethaia, 37:417427Google Scholar
Perkins, T. H. 1991. Calcisabella piloseta, a new genus and species of Sabellinae (Polychaeta: Sabellidae). Bulletin of Marine Science, 48:261267.Google Scholar
Plusquellec, Y. 1968. Commensaux des tabulés et stromatoporoïdes du Dévonien armoricain. Annales de la société géologique du Nord, 88:4756.Google Scholar
Rawlings, T. A., Collins, T. M., and Bieler, R. 2001. A Major Mitochondrial Gene Rearrangement Among Closely Related Species. Molecular Biology and Evolution, 18(8): 16041609.Google Scholar
Richards, P. R. 1974. Ecology of the Cornulitidae. Journal of Paleontology, 48:514523.Google Scholar
Richards, R. P. and Dyson-Cobb, M. 1976. A Lingula-Heliolites association from the Silurian of Gotland, Sweden. Journal of Paleontology, 50: 858864.Google Scholar
Savazzi, E. 1996. Adaptations of vermetid and siliquariid gastropods. Palaeontology, 39:157177.Google Scholar
Senowbari-Daryan, B. 1997. Barbafera carnica Senowbari-Daryan, 1980: A Triassic Worm-tube. Facies, 36:5768.Google Scholar
Sokolov, B. S. 1948. Kommenzializm u Favositid. Izvestija Akademii Nauk SSSR, Biology Series, 1:101110. (In Russian).Google Scholar
Sokolov, B. S. and Obut, A. 1955. In Sokolov, B. S. (ed.), Paleozoic tabulates from the European part of the USSR. Trudy VNIGRI, NS, 85. 527 pp. (In Russian).Google Scholar
Sokolov, B. S. and Tesakov, J. I. 1984. Populyatsionnyj, biotsenoticheskij i biostratigraficheskij analiz tabulyat. Podolskaya model. Akademiya Nauk SSSR, Sibirskoe Otdelenie, Institut Geologii i geofiziki, 577, 198 pp. (In Russian).Google Scholar
Stel, J. H. 1976, The Paleozoic hard substrate trace fossils Helicosalpinx, Chaetosalpinx and Torquasalpinx. Neues Jahrbuch für Geologie und Paläontologie, 12:726744.Google Scholar
Tapanila, L. 2002. A new endosymbiont in Late Ordovician tabulate corals from Anticosti Island, eastern Canada. Ichnos, 9:109116.Google Scholar
Tapanila, L. 2004. The earliest Helicosalpinx from Canada and the global expansion of commensalism in the Late Ordovician sarcinulid corals (Tabulata). Palaeogeography, Palaeoclimatology, Palaeoecology, 215:99110.Google Scholar
Tapanila, L. 2005. Palaeoecology and diversity of endosymbionts in Palaeozoic marine invertebrates: Trace fossil evidence. Lethaia, 38:8999.CrossRefGoogle Scholar
Tapanila, L. and Copper, P. 2002. Endolithic trace fossils in Ordovician-Silurian corals and stromatoporoids, Anticosti Island, eastern Canada. Acta Geologica Hispanica, 37:1520.Google Scholar
Tapanila, L. and Holmer, L. E. 2006. Endosymbiosis in Ordovician-Silurian corals and stromatoporoids: A new lingulid and its trace from eastern Canada. Journal of Paleontology, 80:750759.Google Scholar
Taylor, P. D. and Vinn, O. 2006. Convergent morphology in small spiral worm tubes (“Spirorbis”) and its palaeoenvironmental implications. Journal of the Geological Society, London, 163:225228.CrossRefGoogle Scholar
Tesakov, J. I. 1971. Favositidy Podolii. Akademiya Nauk SSSR, Sibirskoe Otdelenie, Trudy Instituta Geologii i Geofiziki, 120 pp. (In Russian).Google Scholar
Tsegelnjuk, P. D., Gritsenko, V. P., Konstantinenko, L. I., Ishchenko, A. A., Abushik, A. F., Bogoyavlenskaya, O. V., Drygant, D. M., Zaika-Novatsky, V. S., Kadlets, N. M., Kiselev, G. N., and Sytova, V. N. 1983. Silur Podolii, Putevoditel ekskursii. 244 pp., Naukova Dumka, Kyiv.Google Scholar
Vinn, O. 2005a. The tube ultrastructure of serpulids (Annelida, Polychaeta) Pentaditrupa subtorquata, Cretaceous, and Nogrobs cf. vertebralis, Jurassic, from Germany. Proceedings of the Estonian Academy of Sciences, Geology, 54:260265.Google Scholar
Vinn, O. 2005b. A new cornulitid genus from the Silurian of Gotland, Sweden. GFF, 127,205210.Google Scholar
Vinn, O. 2006a. Tentaculitoid affinities of the tubeworm-like fossil Tymbochoos sinclairi (Okulitch, 1937) from the Ordovician of North America. Geobios, 39:739742.Google Scholar
Vinn, O. 2006b. Two new microconchid (Tentaculita Boucek 1964) genera from the Early Palaeozoic of Baltoscandia and England. Neues Jahrbuch für Geologie und Paläontologie, 2006(2):89100.Google Scholar
Vinn, O. 2007. Taxonomic implications and fossilization of tube ultrastructure of some Cenozoic serpulids (Annelida, Polychaeta) from Europe. Neues Jahrbuch für Geologie und Paläontologie, 244(1): 115128.Google Scholar
Vinn, O. and Mutvei, H. 2005. Observations on the morphology, and affinities of cornulitids from the Ordovician of Anticosti Island and the Silurian of Gotland. Journal of Paleontology, 79:725736.Google Scholar
Vinn, O. and Isakar, M. 2007. Tentaculitid affinities of Anticalyptraea from the Silurian of Baltoscandia. Palaeontology, 50:13851390.Google Scholar
Vinn, O. and Taylor, P. D. 2007. Microconchid tubeworms from the Jurassic of England and France. Acta Palaeontologica Polonica, 152:391399.Google Scholar
Vinn, O., ten Hove, H. A., and Mutvei, H.In press. On the tube ultrastructure and origin of calcification in sabellids (Annelida, Polychaeta). Palaeontology.Google Scholar
Weedon, M. J. 1990. Shell structure and affinity of vermiform “gastropods”. Lethaia, 23:297309.Google Scholar
Weedon, M. J. 1991. Microstructure and affinity of the enigmatic Devonian tubular fossil Trypanopora. Lethaia, 24:227–23.Google Scholar
Weedon, M. J. 1994. Tube microstructure of Recent and Jurassic serpulid polychaetes and the question of the Palaeozoic “spirorbids”. Acta Palaeontologica Polonica, 39:115.Google Scholar
Wilson, M. A. and Taylor, P. D. 2006. Predatory drillholes and partial mortality in Devonian colonial metazoans. Geology, 34:565568.CrossRefGoogle Scholar
Wrigley, A. 1950. The differences between the calcareous tubes of vermetids and of serpulids. Journal de Conchyliologie, 90:118121.Google Scholar
Zhen, Y.-Y. 1996. Succession of coral associations during a Givetian transgressive-regressive cycle in Queensland. Acta Palaeontologica Polonica, 41: 5988.Google Scholar