Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T18:34:47.407Z Has data issue: false hasContentIssue false

The earliest beetle identified

Published online by Cambridge University Press:  14 July 2015

Olivier Béthoux*
Affiliation:
Freiberg University of Mining and Technology, Institute of Geology, Department of Palaeontology, Bernhard-von-Cotta Str. 2, D-09596 Freiberg, Germany,

Abstract

Holometabolan insects, including beetles (Coleoptera), represent about half of all living organisms. Their development cycle, allowing larvae and adults to exploit distinct ecological niches, is traditionally advocated as a critical adaptation resulting in this extraordinary diversity. Herein I report the occurrence of a beetle from the Pennsylvanian deposit of Mazon Creek (IL, USA). It predates the diversification of Coleoptera by at least 65 million years. This identification supports the view that, early in their history, hyper-diverse extant holometabolan lineages were dominated by Palaeozoic lineages, mostly extinct. End-Permian environmental perturbations might have played an important role in the Triassic radiation of holometabolans. However, it is hypothesized that ecological preferences of holometabolans might have resulted in an earlier diversification of moderate importance, correlating to that of seed plants, their putative host plants. The evolutionary success of ‘holometaboly’ might be the result of a sequence of favorable events.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beckemeyer, R. J. and Hall, J. D. 2007. The entomofauna of the Lower Permian fossil insect beds of Kansas and Oklahoma, USA. African Invertebrates, 48:2339.Google Scholar
Belayeva, N. V., Blagoderov, V. A., Dmitriev, V. Y., Eskov, K. Y., Gorochov, A. V., Ivanov, V. D., Kluge, N. Y., Kozlov, M. V., Lukashevich, E. D., Mostovski, M. B., Novokshonov, V. G., Ponomarenko, A. G., Popov, Y. A., Pritykina, L. N., Rasnitsyn, A. P., Shcherbakov, D. E., Sinitshenkova, N. D., Storozhenko, S. Y., Sukatsheva, I. D., Vishniakova, V. N., Vrš anský, P., and Zherikhin, V. V. 2002. History of Insects. Kluwer Academic Publishers, Dordrecht, 517 p.Google Scholar
Béthoux, O. 2003. Protophasma dumasii Brongniart, 1879, a link between Orthoptera and the ‘dictyopterid’ orders? Journal of Orthoptera Research, 12:5762.Google Scholar
Béthoux, O. 2005a. Cnemidolestodea (Insecta): an ancient order reinstated. Journal of Systematic Palaeontology, 3:403408.CrossRefGoogle Scholar
Béthoux, O. 2005b. Reassigned and new basal Archaeorthoptera from the Upper Carboniferous of Mazon Creek (IL, USA). Journal of Orthoptera Research, 14:121126.Google Scholar
Béthoux, O. 2005c. Wing venation pattern of Plecoptera (Neoptera). Illiesia, 1:5281.Google Scholar
Béthoux, O. 2006. Revision of Cacurgus Handlirsch, 1911, a basal Pennsylvanian Archaeorthoptera (Insecta: Neoptera). Bulletin of the Peabody Museum of Natural History, 47:2935.Google Scholar
Béthoux, O. 2008. Groundplan, nomenclature, homology, phylogeny, and the question of the insect wing venation pattern. Alavesia, 2:219232.Google Scholar
Béthoux, O., Beattie, R. G., and Nel, A. 2007a. Wing venation and relationships of the order Glosselytrodea (Insecta). Alcheringa, 31:285296.Google Scholar
Béthoux, O. and Briggs, D. E. G. 2008. How Gerarus lost its head: stem-group Orthoptera and Paraneoptera revisited. Systematic Entomology, 33:529547.Google Scholar
Béthoux, O., Nel, A., and Lapeyrie, J. 2004. The extinct order Caloneurodea (Insecta, Pterygota, Panorthoptera): wing venation, systematics, and phylogenetic relationships. Annales Zoologici, 54:289318.Google Scholar
Béthoux, O., Nel, A., Schneider, J. W., and Gand, G. 2007b. Lodetiella magnifica nov. gen. and nov. sp. (Insecta: Palaeodictyoptera; Permian), an extreme situation in wing morphology of palaeopterous insects. Geobios, 40:181189.Google Scholar
Blagoderov, V. A., Grimaldi, D., and Fraser, N. C. 2007. How time flies for flies: diverse Diptera from the Triassic of Virginia and early radiation of the order. American Museum Novitates, 3572:139.Google Scholar
Bolton, H. 1922. A monograph of the fossil insects of the British Coal Measures. Part II. Palaeontographical Society, 74:81156.Google Scholar
Brongniart, C. 1885. Les Insectes fossiles des terrains primaires. Coup d'oeil rapide sur la faune entomologique des terrains paléozoïques. Bulletin de la Société des Amis des Sciences naturelles de Rouen, 1885:5068.Google Scholar
Burnham, L. 1994. The Stephanian (Late Carboniferous) insects of the basin of Montceau-les-Mines (Massif Central, France), p. 187200. In Heyler, D. and Poplin, C. (eds.), Quand le Massif central était sous l'équateur. Comité des Travaux Historiques et Scientifiques, Paris.Google Scholar
Carpenter, F. M. 1966. The Lower Permian insects of Kansas. Part 11: The orders Protorthoptera and Orthoptera. Psyche, 73:4688.Google Scholar
Carpenter, F. M. 1987. Review of the extinct family Syntonopteridae (order uncertain). Psyche, 94:373388.Google Scholar
Carpenter, F. M. 1992. Superclass Hexapoda, p. xxii+655. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology. Vol. 4. The Geological Society of America and the University of Kansas, Boulder.Google Scholar
Carpenter, F. M. 1997. Insecta, p. 184193. In Shabica, C. W. and Hay, A. A. (eds.), Richardson's Guide to The Fossil Fauna of Mazon Creek. Northeastern Illinois University, Chicago.Google Scholar
Danilevsky, A. S., Goryshin, N. I., and Tysihchenko, V. P. 1970. Biological rhythms in terrestrial arthropods. Annual Review of Entomology, 15:201244.Google Scholar
Delclòs, X., Nel, A., Azar, D., Bechly, G., Dunlop, J. A., Engel, M. S., and Heads, S. W. 2008. The enigmatic Mesozoic insect taxon Chresmodidae (Polyneoptera): New palaeobiological and phylogenetic data, with the description of a new species from the Lower Cretaceous of Brazil. Neue Jahrbuch für Geologie und Palaeontologie, Abhandlungen, 247:353381.Google Scholar
Dimichele, W. A., Pfefferkorn, H. W., and Gastaldo, R. A. 2001. Response of Late Carboniferous and Early Permian plant communities to climate change. Annual Review of Earth and Planetary Sciences, 29:461487.Google Scholar
Dmitriev, V. Y. and Ponomarenko, A. G. 2002. 3.1. Dynamics of insect taxonomic diversity, p. 325330. In Rasnitsyn, A. P. and Quicke, D. L. J. (eds.), History of Insects. Kluwer Academic Publishers, Dordrecht.Google Scholar
Farrell, B. D. 1998. “Inordinate fondness” explained: why are there so many beetles. Science, 281:555558.CrossRefGoogle ScholarPubMed
Grimaldi, D. and Engel, M. S. 2005. Evolution of the Insects. Cambridge University Press, New York, 755 p.Google Scholar
Handlirsch, A. 1906a. Die fossilen Insekten und die Phylogenie der rezenten Formen. Ein Handbuch für Paläontologen und Zoologen. Wilhelm Engelmann, Berlin, 1430 p.Google Scholar
Handlirsch, A. 1906b. Revision of American Paleozoic insects. Proceedings of the United States National Museum, 29:661820.CrossRefGoogle Scholar
Heller, K. M. 1913. Ein neuer Cupedidae. Wiener Entomologische Zeitung, 32:235237.Google Scholar
Jarzembowski, E. A. and Ross, A. J. 1996. Insect origination and extinction in the Phanerozoic, p. 6578. In Hart, M. B. (ed.), Biotic Recovery from Mass Extinction Events. Volume 102. Geological Society Special Publication, London.Google Scholar
Knoll, A. H. and Carroll, S. B. 1999. Early animal evolution: emerging views from comparative biology and geology. Science, 284:21292137.Google Scholar
Kristensen, N. P. 1999. Phylogeny of endopterygote insects, the most successful lineage of living organisms. European Journal of Entomology, 96:237253.Google Scholar
Krzeminski, W. and Krzeminska, E. 2003. Triassic Diptera: descriptions, revisions and phylogenetic relations. Acta Zoologica Cracoviensia, 46 (suppl. - Fossil Insects): 153184.Google Scholar
Kukalová-Peck, J. 1991. Fossil History and the Evolution of Hexapod Structures, p. 141179. In Naumann, I. D., Crane, P. B., Lawrence, J. F., Nielsen, E. S., Spradbery, J. P., Taylor, R. W., Whitten, M. J., and Littlejohn, M. J. (eds.), The Insects of Australia, a textbook for students and researchers. Vol. 1. Melbourne University Press, Melbourne.Google Scholar
Kukalová-Peck, J. 1997. Mazon Creek insect fossils: the origin of insect wings and clues about the origin of insect metamorphosis, p. 194207. In Shabica, C. W. and Hay, A. A. (eds.), Richardson's Guide to The Fossil Fauna of Mazon Creek. Northeastern Illinois University, Chicago.Google Scholar
Kukalová-Peck, J. and Lawrence, J. F. 2004. Relationships among coleopteran suborders and major endoneopteran lineages: evidence from hind wing characters. European Journal of Entomology, 101:95144.Google Scholar
Kukalová, J. 1969. On the systematic position of the supposed Permian beetles, Tshecardocoleidae, with a description of a new collection from Moravia. Sbornik Geologickych Ved, Paleontologie, 11:139162.Google Scholar
Labandeira, C. C. 2006. Silurian to Triassic plant and hexapod clades and their associations: new data, a review, and interpretations. Arthropod Systematics & Phylogeny, 64:5394.Google Scholar
Labandeira, C. C. and Phillips, T. L. 1996. A Carboniferous insect gall: Insight into early ecologic history of the Holometabola. Proceedings of the National Academy of Sciences of the United States of America, 93:1227812282.Google Scholar
Labandeira, C. C. and Phillips, T. L. 2002. Stem boring and petiole galls from Pennsylvanian tree ferns of Illinois, USA: implications for the origin of the borer and galler functional-feeding-groups and Holometabolous insects. Palaeontographica Abteilung A, 264:184.CrossRefGoogle Scholar
Labandeira, C. C. and Sepkoski, J. J. 1993. Insect diversity in the fossil record. Science, 261:310315.CrossRefGoogle ScholarPubMed
Lameere, A. 1922. Sur la nervation alaire des Insectes. Bulletin de la Classe des Sciences de l'Académie Royale de Belgique, 8:138149.Google Scholar
Lameere, A. 1923. On the wing-venation of insects. Psyche, 30:123132.Google Scholar
Lesnikowska, A. D. 1990. Evidence of herbivory in tree-fern petioles from the Calhoun Coal (Upper Pennsylvanian) of Illinois. Palaios, 5:7680.CrossRefGoogle Scholar
Lubkin, S. H. and Engel, M. S. 2005. Permocoleus, new genus, the first Permian beetle (Coleoptera) from North America. Annals of the Entomological Society of America, 98:7376.Google Scholar
McElwain, J. C. and Punyasena, S. W. 2007. Mass extinction events and the plant fossil record. Trends in Ecology and Evolution, 22:548557.Google Scholar
Needham, J. G. and Claassen, P. W. 1925. A monograph of the Plecoptera or Stoneflies of America North to Mexico. Thomas Say Foundation, LaFayette, 397 p.Google Scholar
Nel, A., Rocques, P., Nel, P., Prokop, J., and Steyer, J. S. 2007. The earliest holometabolous insect from the Carboniferous: a “crucial” innovation with delayed success (Insecta Protomeropina Protomeropidae). Annales de la Société Entomologique de France (N.S.), 43:349355.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1985. Patterns in vascular plant diversification: an analysis at the species level, p. 97128. In Valentine, J. W. (ed.), Phanerozoic diversity patterns. Princeton University Press, Princeton.Google Scholar
Papier, F., Nel, A., Grauvogel-Stamm, L., and Gall, J. C. 2005. La diversité des Coleoptera du Trias dans le Nord-Est de la France. Geodiversitas, 27:181199.Google Scholar
Parkinson, . 1798. Description of the Phasma dilatatum . Transactions of the Linnean Society of London, 4:190192.Google Scholar
Pfefferkorn, H. W. 1979. High diversity and stratigraphic age the Mazon Creek flora, p. 129142. In Nitecki, M. H. (ed.), Mazon Creek fossils. Academic Press, New York.Google Scholar
Ponomarenko, A. G. 1969. Istoricheskoe razvitie Zhestkokrylykh-Arkhostemat [Historical development of the Coleoptera- Archostemata]. Trudy Paleontologicheskogo instituta, Akademiya Nauk SSSR, 125:1240.Google Scholar
Ponomarenko, A. G. 2002. 2.2.1.3.2. Superorder Scarabaeida Laicharting, 1781. Order Coleoptera Linné, 1758. The beetles, p. 164176. In Rasnitsyn, A. P. and Quick, K. (eds.), History of Insects. Kluwer Academic Publishers, Dordrecht.Google Scholar
Queiroz, A de. 2002. Contingent predictability in evolution: key traits and diversification. Systematic Biology, 51:917929.Google Scholar
Rasnitsyn, A. P. 2002a. 2.2.1.1. Cohors Libelluliformes Laicharting, 1781 (=Subulocornes Latreille, 1807, =Hydropalaeoptera Rohdendorf, 1968), p. 8589. In Rasnitsyn, A. P. and Quicke, D. L. J. (eds.), History of Insects. Kluwer Academic Publishers, Dordrecht.Google Scholar
Rasnitsyn, A. P. 2002b. 2.2.1.3.3.4. Order Jurinida M. Zalessky, 1928 (=Glosselytrodea Martynov, 1938), p. 189192. In Rasnitsyn, A. P. and Quicke, D. L. J. (eds.), History of Insects. Kluwer Academic Publishers, Dordrecht.Google Scholar
Rasnitsyn, A. P. 2002c. 2.2.1.3. Cohors Scarabaeiformes Laicharting, 1781. The holometabolans (=Holometabola Burmeister, 1835, =Endopterygota Sharp, 1899, =Oligoneoptera Martynov, 1938), p. 157164. In Rasnitsyn, A. P. and Quicke, D. L. J. (eds.), History of Insects. Kluwer Academic Publishers, Dordrecht.Google Scholar
Ren, D. 1997. First record of fossil stick-insects from China with analyses of some palaeobiological features (Phasmatodea: Hagiphasmatidae fam. nov.). Acta Zootaxonomica Sinica, 22:268282.Google Scholar
Riek, E. F. and Kukalová-Peck, J. 1984. A new interpretation of dragonfly wing venation based upon Early Upper Carboniferous fossils from Argentina (Insecta, Odonatoidea) and basic character states in pterygota wings. Canadian Journal of Zoology, 62:11501166.CrossRefGoogle Scholar
Roscher, M. and Schneider, J. W. 2006. Permo-Carboniferous climate: Early Pennsylvannian to Late Permian climate development of central Europe in a regional and global context, p. 95136. In Lucas, S. G., Cassinis, G., and Schneider, J. W. (eds.), Non-Marine Permian Biostratigraphy and Biochronology. Volume 265. Geological Society, Special Publications, London.Google Scholar
Ross, E. A. 2000. Contributions to the biosystematics of the insect order Embiidina. Part 1. Origin, relationships and integumental anatomy of the insect order Embiidina. Occasional papers of the California Academy of Sciences, 149:136.Google Scholar
Scudder, S. H. 1885. Palaeodictyoptera: on the affinities and classification of Paleozoic Hexapoda. Memoirs of the Boston Society of Natural History, 3:319351.Google Scholar
Sharov, A. G. 1968. Filogeniya orthopteroidnykh nasekomykh. Trudy Paleontologicheskogo instituta, Akademiya Nauk SSSR, 118:1216.Google Scholar
Sharov, A. G. 1971. Phylogeny of the Orthopteroidea. Israel Program for Scientific Translations, Jerusalem, vi + 251 p.Google Scholar
Shcherbakov, D. E., Lukashevich, E. D., and Blagoderov, V. A. 1995. Triassic Diptera and initial radiation of the order. International Journal of Dipterological Research, 6:75115.Google Scholar
Storozhenko, S. Y. 2002. 2.2.2.2.1. Order Grylloblattida Walker, 1914 (=Notoptera, Crampton, 1915, =Grylloblattodea Brues et Melander, 1932, +Protorthoptera Handlirsch, 1906, =Paraplecoptera Martynov, 1925, +Protoperlaria Tillyard, 1928), p. 278281. In Rasnitsyn, A. P. and Quicke, D. L. J. (eds.), History of Insects. Kluwer Academic Publishers, Dordrecht.Google Scholar
Truman, J. W. and Riddiford, L. M. 1999. The origins of insect metamorphosis. Nature, 401:447452.Google Scholar
Vršanský, P., Vishniakova, V. N., and Rasnitsyn, A. P. 2002. 2.2.2.1.1. Order Blattida Latreille, 1810. The cockroaches (=Blattodea Brunner von Wattenvill, 1882), p. 263270. In Rasnitsyn, A. P. and Quicke, D. L. J. (eds.), History of Insects. Kluwer Academic Publishers, Dordrecht.Google Scholar
Whiting, M. F. 2004. Phylogeny of the Holometabolous Insects. The most successful group of terrestrial organisms, p. 345364. In Cracraft, J. and Donoghue, M. (eds.), Assembling the Tree of Life. Oxford University Press, Oxford.Google Scholar
Willmann, R. 1997. Advances and problems in insect phylogeny, p. 269279. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod Relationships. Chapman and Hall, London.Google Scholar
Willmann, R. 1999. The Upper Carboniferous Lithoneura lameeri (Insecta, Ephemeroptera?). Paläontologische Zeitschrift, 73:289302.Google Scholar
Yang, A. S. 2001. Modularity, evolvability, and adaptative radiations: a comparison of the hemi- and holometabolous insects. Evolution and Development, 3:5972.Google Scholar