Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T12:03:40.591Z Has data issue: false hasContentIssue false

Discovery of fish mortality horizon at the K-T Boundary on Seymour Island: Re-evaluation of events at the end of the Cretaceous

Published online by Cambridge University Press:  14 July 2015

William J. Zinsmeister*
Affiliation:
Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907

Abstract

The discovery of a fish bone layer immediately overlying the K-T iridium anomaly on Seymour Island, Antarctic Peninsula, which may represent the first documented mass kill associated with the impact event, together with new faunal data across the boundary has provided new insight into events at the end of the Cretaceous. The utilization of a geographical approach and a new graphical representation of range data has revealed that events at the end of the Cretaceous were not instantaneous, but occurred over a finite period of time. Although the fish bone layer may contain victims of the impact event, the absence of ammonites in either the iridiumbearing layer or the overlying fish layer suggests that the extinction event at the end of the Cretaceous was the culmination of several processes beginning in the late Campanian. The impact was the proverbial “straw that broke the camel's back,” leading to the extinction of many others forms of life that might have survived the period of global biotic stress during the waning stages of the Mesozoic if there had not been an impact. The absence of mass extinction following catastrophic geologic events in a biotic robust world, such as the Middle Ordovician Millbrig-Big Bentonite volcanic event suggests that the biosphere is remarkably resilient to major geologic catastrophes with mass extinction events occurring only when there is a conjunction of geologic events none of which might be capable of producing a global mass extinction by itself.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, W., Kauffman, E. G., Surlyk, F., Alvarez, L. W., Asaro, F., and Michel, H. V. 1984. Impact theory of mass extinctions and the invertebrate fossil record. Science, 223:11351140.CrossRefGoogle ScholarPubMed
Archibad, J. D. 1996. Dinosaur Extinction and the End of an Era: What the Fossils Say, Columbia University Press, New York, 237 p.Google Scholar
Askin, R. A. and Jacobson, S. R. 1996. Palynological change across the Cretaceous-Tertiary boundary on Seymour Island, Antarctica: environmental and depositional factors, p. 726. In MacLeod, N. and Keller, G. (eds.), Cretaceous-Tertiary Mass Extinction: Biotic and Environmental Changes. W. W. Norton and Company, New York.Google Scholar
Beavan, G. 1946. Effect of Susquehanna river stream flow on Chesapeake Bay salinities and history of past oyster mortalities on upper bay bars. Contribution to Chesapeake Biological Laboratory, 68:19.Google Scholar
Birkeland, T. and Hakansson, E. 1982. The terminal Cretaceous extinction in Boreal shelf seas—A multicausal event, p. 373384. In Silver, L. T. and Schultz, P. H. (eds.), Geological Implication of Impacts of Large Asteroids and Comets on the Earth. Geological Society of America Special Paper 190.CrossRefGoogle Scholar
Blackwelder, E. 1916. The geologic role of phosphorus. American Journal of Science, Series 4, 42(250):285298.CrossRefGoogle Scholar
Blegvad, H. 1929. Mortality among animals of the littoral region in ice winters. Report of the Danish Biological Station, 35:4962.Google Scholar
Boggild, O. B. 1916. Meeresgrundproben der Siboga-Expedition. Sibooga-Expeditie, 79(65):150.Google Scholar
von Bonde, C. 1928. Report no. 5 for the years 1925–1927. Fish and Marine Biological Survey, Union of South Africa, 1085.Google Scholar
Brecher, H. H. 1984. 1984, Landsat 3 RBV imagery as scale control for a topographic map of Seymour Island, Antarctica from non-metric aerial photographs. Surveying and Mapping, 44:253258.Google Scholar
Bower, W. T. and Fassett, H. C. 1914. Fishery industries. Alaska Fisheries and fur industries in 1913. In Report of the United States Commission of Fisheries for 1913, 37-139.Google Scholar
Brongersma-Sanders, M. 1947. On the desirability of research into certain phenomena in the region of upwelling water along the coast of South West Africa. Proceedings of the Koninklijke Nederlandse Akademie von Wetenschappen, 50(6):659665.Google Scholar
Brongersma-Sanders, M. 1949. On the occurrence of fish remains in fossil and Recent marine deposits. Bijdragen Dierkunde, Leiden, 28:6576.CrossRefGoogle Scholar
Brongersma-Sanders, M. 1957. Mass mortality in the sea, p. 9411010. In Hedgepath, J. W. (ed.), Treatise on marine ecology and paleoecology, 1. Geological Society of American Memoir, 67.Google Scholar
Clemens, W. A., Archibald, J. D., and Hickey, L. J. 1981. Evolution of terrestrial faunas during the Cretaceous-tertiary transition. Memoir de la Societe Geologique de France, New Series, 139:6774.Google Scholar
Coogan, A. H. 1969. Evolution ray trends in rudist hard parts, p. N766776. In Moore, R. C. (ed.), Treatise of Invertebrate Paleontology. Geological Society of America, Boulder, Colorado.Google Scholar
Courtillot, V. E. 1990. What caused the mass extinction: a volcanic eruption? Scientific American, 263(4):8592.CrossRefGoogle ScholarPubMed
Cutler, A. H. and Behrensmeyer, A. K. 1996. Models of vertebrate mortality events at the K/T boundary, p. 375379. In Ryder, G., Fastovsky, D., and Gartner, S., (eds.), The Cretaceous-Tertiary Event and Other Catastrophes in Earth History. Geological Society of America Special Paper 307.Google Scholar
David, L. E. 1943. Miocene fishes of southern California. In Geological Society of America Special Paper 43, 193 p.CrossRefGoogle Scholar
David, L. E. 1947. Significance of fish remains in Recent deposits off coast of Southern California. Bulletin of the American Association of Petroleum Geologists, 31(2):367370.Google Scholar
David, L. E. 1957. Fish (other than Agnatha), p. 9991010. In Ladd, H. (ed.), Treatise on Marine Ecology and Paleoecology, 2. Geological Society of American Memoir 67.Google Scholar
Dickinson, W. R. and Seely, D. R. 1979. Structure and stratigraphy of kore-arc basins. In Bulletin of the American Association of Petroleum Geologists. 63:CrossRefGoogle Scholar
Dietrich, G. 1935. Aufbau und dynamik des sudlichen Agulhas strombebietes. Veroffentlichungen des Institut fur Meeresforschung, 27:179.Google Scholar
Eastman, C. R. 1903. Sharks’ teeth and cetacean bones. Albatross 1899-1900. Museum of Comparative Zoology, Memior, 50:177192.Google Scholar
Eastman, C. R. 1906. Sharks’ teeth and cetacean bones. Albatross 1899-1900. Museum of Comparative Zoology, Memior, 26(40):7598.Google Scholar
Ekdale, A. A. and Bromley, R. G. 1984. Sedimentology and ichnology of the Cretaceous-Tertiary boundary in Denmark: implication for the causes of the Terminal Cretaceous Extinction. Journal of Sedimentary Petrology, 54:681703.Google Scholar
Elliot, D. H. 1988. Tectonic setting and evolution of the James Ross Basin, northern Antarctic Peninsula, p. 541555. In Feldmann, R. M. and Woodburne, M. O. (eds.), Geology and Paleontology of Seymour Island, Antarctic Peninsula. Geological Society of America Memoir 169.CrossRefGoogle Scholar
Elliot, D. H., Askin, R. A., Kyte, F. T., and Zinsmeister, W. J. 1994. Iridium and dinocysts at the Cretaceous-Tertiary boundary on Seymour Island, Antarctica: Implication for the K-T event. Geology. 22:675678.2.3.CO;2>CrossRefGoogle Scholar
Elliott, C. C., Aronson, J. L., Millard, H. T., and Gierlowski-Kordesch, E. 1989. The origin of the clay minerals at the Cretaceous/Tertiary boundary in Denmark. Geological Society of America, 101:702710.2.3.CO;2>CrossRefGoogle Scholar
Engle, J. B. 1946. Commercial aspects of the upper Chesapeake Bay oyster bars in the light of recent oyster mortalities. In Convention of the National Shellfish Association, New York, 4246.Google Scholar
Escher, B. G. 1948. Grondslagen der algemene geologie. 7th edition, Amsterdam-Antwerp, 442 p.Google Scholar
Flake, H. 1939. Uber recente sedimentbildung in der bucht von Concepcion (Mittel Chile). Petroleum, 35(34):640644.Google Scholar
Flake, H. 1950. Das fischterben in der bucht von Concepcion (Mittel Chile). Senchenbergiana, 32:5777.Google Scholar
Fastvsky, D. E. and Weishampel, D. B. 1996. The Evolution and Extinction of the Dinosaurs, Cambridge University Press, 460p.Google Scholar
Gislen, T. 1931. A survey of the marine associations in the Misaki district with notes concerning their environmental conditions. Journal of the Faculty of Science, Imperial University of Tokyo, Section 4, Zoology, 2:389444.Google Scholar
Gunter, G. 1941. Death of fishes due to cold on the Texas coast, January 1940. Ecology, 22(2):203208.CrossRefGoogle Scholar
Gunter, G. 1947. Catastrophism in the sea and its paleontological significance, with special reference to the Gulf of Mexico. American Journal of Science, 245:669676.CrossRefGoogle Scholar
Hansen, P. M. 1939. The age composition of the stock of cod in West Greenland waters in the years 1924 to 1938. Rapport Proces Verbaux du Conseil, 109:6065.Google Scholar
Haszpunar, G. 1988. Anatomy and relationships of the bone-feeding limpets, Cocculinella minutissima (Smith) and Osteopelta mirabilis Marshall (Archaeogastropoda). Journal of Molluscan Studies, 54:120.CrossRefGoogle Scholar
Hay, W. D., Bergstrom, S. M., and Kolata, D. R. 1992. Gigantic Ordovician volcanic ash fall in North America and Europe: biological, tectonomagmatic, and event-stratigraphic significance. Geology, 20:875878.Google Scholar
Hedgpeth, J. W. 1947. What happens in the Laguna Madre? Texas Game and Fish, 5:1415, and 30.Google Scholar
Heymann, D., Yancey, T. E., and Theimens, M. 1997. Native sulfur in sediments from KT boundary sites of the Brazos River, Texas. Lunar and Planetary Sciences, XXVIII, 2:565566.Google Scholar
Horner, J. R. and Gorman, J. 1988. Digging Dinosaurs. Workman Publications, New York, 210 p.Google Scholar
Huber, B. 1988. Upper Campanian-Paleocene foraminifera from the James Ross Island region, Antarctic Peninsula, p. 163252. In Feldmann, R. M. and Woodburne, M. O. (eds.), Geology and Paleontology of Seymour Island, Antarctic Peninsula. Geological Society of America Memoir 169.CrossRefGoogle Scholar
James, D. E. 1971. Plate tectonics model for the evolution of the Andes. Bulletin of the Geological Society of America, 82:CrossRefGoogle Scholar
Jensen, A. S. 1922. Researches on the distribution, biology, and systematics of the Greenland fishes. Videnskabekuge Meddellelser Dansk Naturhistorisk forening Kobenhavn, 74:89109.Google Scholar
Johansen, A. C. 1929. Mortality among porpoises, fish and the larger crustaceans in the waters around Denmark in severe winters. Report Danish Biological Station, 35:6397.Google Scholar
Johnson, C. C. and Kauffman, E. G. 1996. Maastrichtian extinction patterns of Caribbean Province rudistids, p. 231274. In MacLeod, N. and Keller, G. (eds.), Cretaceous-Tertiary Mass Extinction: Biotic and Environmental Changes. W. W. Norton and Company, New York.Google Scholar
Jordan, D. S. 1920. A Miocene catastrophe. Natural History, 20:1822.Google Scholar
Kastner, M., Asaro, F., Michel, H. V., Alvarez, W., and Alvarez, L. W. 1984. The precursor of the Cretaceous-Tertiary clays at Stevns Klint, Denmark, and DSDP Hole 465A. Science, 226:137143.CrossRefGoogle ScholarPubMed
Kauffman, E. G. 1984. The fabric of Cretaceous extinctions, p. 151245. In Berggren, W.A. and van Couvering, J. A. (eds.), Catastrophes and Earth History. Princeton University Press, Princeton.Google Scholar
Kauffman, E. G. 1988. The dynamics of marine stepwise mass extinction, p. 5771. In Lamolda, M. A., Kauffman, E. G., and Walliser, O. H. (eds.), Palaeontology and Evolution: Extinction Events, III Jornadas de Paleontologia, 2nd International Conference Global Bioevents. Revista Espanola de Paleontologia, Numero Extraordinario.CrossRefGoogle Scholar
Kauffman, E. G. 1994. Common patterns of mass extinction, survival, and recovery in marine environments: What do they tell us about the future? p. 437466. In Rosenberg, G. D. (ed.), Paleontological Society Special Publication 7.Google Scholar
Macellari, C. E. 1984. Late Cretaceous stratigraphy, sedimentology, and macropaleontology of Seymour Island, Antarctic Peninsula. Unpublished Ph.D. dissertation, The Ohio State University, Columbus, 599 p.Google Scholar
Macellari, C. E. 1986. Late Campanian-Maastrichtian ammonites from Seymour Island, Antarctic Peninsula. Journal of Paleontology, 60(2 of 2):155.CrossRefGoogle Scholar
Macellari, C. E. 1988. Stratigraphy, sedimentology, and paleontology of Upper Cretaceous/Paleocene shelf-deltaic sediments of Seymour Island, p. 2553. In Feldmann, R. M. and Woodburne, M. O. (eds.), Geology and Paleontology of Seymour Island, Antarctic Peninsula. Geological Society of America Memoir 169.CrossRefGoogle Scholar
Marshall, C. R. 1995. Distinguishing between sudden and gradual extinctions in the fossil record: predicting the position of the Cretaceous-Tertiary iridium anomaly using the ammonite fossil record on Seymour Island. Geology, 23:731734.2.3.CO;2>CrossRefGoogle Scholar
Martill, D. M. 1991. Bones as stones: the contribution of vertebrates remains to the lithologic record, pp. 270292. In Donovan, S. K. (ed.), The Processes of Fossilization. Columbia University Press, New York.Google Scholar
McLean, D. 1985. Deccan traps mantle degassing in the terminal Cretaceous marine extinction. Cretaceous Research, 6:235259.CrossRefGoogle Scholar
Murray, J. 1889. On marine deposits in the Indian, Southern and Antarctic Oceans. Scottish Geographic Magazine, 5:405436.CrossRefGoogle Scholar
Murray, J., and Renard, A. F. 1891. Report on the deep-sea deposits. Report of the Scientific Results of the Voyage of the HMS “Challenger” 1872-1876, 525p.Google Scholar
Newell, D. D. 1982. Mass extinction: illusions or realities? p. 257263. In Silver, L. T. and Schultz, P. H. (eds.), Geological Implication of Impacts of Large Asteroids and Comets on the Earth. Geological Society of America Special Paper 190.CrossRefGoogle Scholar
Officer, C. B. and Ekdale, A. A. 1986. Letters. Science, 234:262264.CrossRefGoogle Scholar
Olivero, E. B. 1992. Asociaciones de amonites de la formacion Santa Marta (Cretacico Tardio), Isla James Ross, Antartida. Geologia de la Isla James Ross, Instituto Antartico Argentino, Buenos Aires, Argentina, p. 4776.Google Scholar
Oppel, A. 1856-1858. Die Juraformation Englands, Frankreichs und des sudwestlichen Deutschland. Wurttemberg Naturwissenschaftlichen Verein Jahreshefte, v. xii-xiv (p. 1438, 1856; 439-694, -1857; 695-857, 1858) Stuttgart.Google Scholar
Schafer, W. 1962. Aktuo-palaontologie, nach studien in der Nordsee. Verlag W. Kramer, Frankfurt, Chicago Press 1972 edition, translated by Irmgard Oertel, 567 p.Google Scholar
Shaw, A. B. 1964. Time in stratigraphy. McGraw-Hill Book company, New York, 365 p.Google Scholar
Sieberg, A. von. 1923. Geologische, physikalische und angewandte Erdbebenkunde, Jena, 572 p.Google Scholar
Signor, P. W. and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record, p. 291298. In Silver, L. T. and Schultz, P. H. (eds.), Geological Implication of Impacts of Large Asteroids and Comets on the Earth. Geological Society of America Special Paper 190.CrossRefGoogle Scholar
Smith, W. 1817. Stratigraphical system of organized fossils. E. Williams, Bookseller, London, 118 p.Google Scholar
Springer, M. S. 1991. The effect on random range truncations on patterns of evolution in the fossil record. Paleobiology, 16(4):512520.CrossRefGoogle Scholar
Stilwell, J. D. 1995. Latest Cretaceous to earliest Paleogene molluscan faunas of New Zealand: changes in composition as a consequence of the breakup of Gondwana and extinction. Unpublished Ph.D. Dissertation, University of Otago, New Zealand, 1400p.Google Scholar
Storey, M. and Gudger, E. W. 1936. Mortality of fishes due to cold at Sanibel Island, Florida, 1886-1936. Ecology, 17:640648.CrossRefGoogle Scholar
Strauss, D. and Sadler, P. M. 1989. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology, 21:411427.CrossRefGoogle Scholar
Stubbings, H. G. 1939. The marine deposits of the Arabian Sea. An investigation into their distribution and biology. Scientific Reports of the John Murray Expedition, 1933-34, London, 3:31158.Google Scholar
Sweet, A., Braman, D. R., and Lerbekmo, J. F. 1993. Northern and mid-continental Maastrichtian and Paleocene palynofloristic extinction events. In Geological Association of Canada Proceedings and Abstracts, p. A103.Google Scholar
Thomas, E. 1990. Late Cretaceous-early Eocene mass extinction in the deep sea, p. 481495, In Sharpton, V.L. and Ward, P.D. (eds.), Global Catastrophes in the Earth History. Geological Society of America Special Paper 247.CrossRefGoogle Scholar
Ward, P. D. 1990a. The Cretaceous/Tertiary extinctions in the marine realm: a 1990 perspective, p. 425432, In Sharpton, V. L. and Ward, P. D. (eds.), Global Catastrophes in the Earth History. Geological Society of America Special Paper 247.CrossRefGoogle Scholar
Ward, P. D. 1990b. A review of Maastrichtian ammonite ranges, p. 519530. In Sharpton, V. L. and Ward, P. D. (eds.), Global Catastrophes in the Earth History. Geological Society of America Special Paper 247.Google Scholar
Ward, P. D. 1995. The K/T Trial. Paleobiology, 21:245247.CrossRefGoogle Scholar
Weidmann, J. 1986. Macro-invertebrates and the Cretaceous-Tertiary boundary, p. 397409. In Walliser, O. (ed.), Global Bioevents. Springer-Verlag Lecture Notes in Earth Sciences, Volume 8, Berlin.Google Scholar
Weidmann, J. 1988. Ammonoid extinction and the “Cretaceous-Tertiary boundary event,” p. 117-14. In Weidmann, J. and Kullmann, K. (eds.), Cephalopods—Present and Past. Springer-Verlag, Stuttgart.Google Scholar
Weigelt, J. 1927. Rezente wirbeltierleichen und ihre palaobiologische bedeutung. Max Weg, Leipzig, 227 p.Google Scholar
Zinsmeister, W. J. 1993. It's time to look at all the evidence: a view of the K/T from Antarctica. Geological Association of Canada Proceedings and Abstracts, p. A135.Google Scholar
Zinsmeister, W. J. 1994. What can the fossil record tell us about the terminal Cretaceous Extinction Event and the disappearance of the dinosaurs? p. 487500. In Rosenberg, G.D., (ed.), Paleontological Society Special Publication 7.Google Scholar
Zinsmeister, W. J. 1995. An extirpation horizon at the K/T boundary on Seymour Island? Geological Society of America, Program with Abstracts, 26(6):A143.Google Scholar
Zinsmeister, W. J. 1996. Spatial biostratigraphy: emperical approach to approximating lineage terminations and evaluation extinction patterns. Geological Society of America, Program with Abstracts, 27(6):A249.Google Scholar
Zinsmeister, W. J. and Feldmann, R. M. 1995. Antarctica, the forgotten stepchild; a view of the K-T extinction from the high southern latitudes. Lunar and Planetary Institute, Contribution, 825:134135.Google Scholar
Zinsmeister, W. J. and Feldmann, R. M. 1996. Late Cretaceous faunal changes in the high southern latitudes: a harbinger of biotic global catastrophe? p. 356378. In MacLeod, N. and Keller, G., (eds.), Cretaceous-Tertiary Mass Extinction: Biotic and Environmental Changes, W. W. Norton & Co., New York.Google Scholar
Zinsmeister, W. J., Feldmann, R. M., Woodburne, M. O., and Elliot, D. H. 1989. Latest Cretaceous/earliest Tertiary transition on Seymour Island, Antartica. Journal of Paleontology, 63:731738.CrossRefGoogle Scholar