Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T12:31:10.067Z Has data issue: false hasContentIssue false

Diploporite (Echinodermata, Blastozoa) thecal attachment structures from the Silurian of southeastern Indiana

Published online by Cambridge University Press:  14 July 2015

James R. Thomka
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221, USA, ;
Carlton E. Brett
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221, USA, ;

Abstract

Taxonomic descriptions of diploporites from the middle Silurian of eastern Laurentia have focused nearly entirely on thecal plating, with minimal description or figuring of attachment structures. A recently discovered hardground surface within the Wenlock-age (Sheinwoodian) Massie Formation that is encrusted by numerous well-preserved pelmatozoan holdfasts, including structures identifiable as diploporite thecal attachments, provides an opportunity to document the morphology of these rarely described structures. Moderately thin-walled structures with a parabolic, depressed central area composed of seven distinct marginal plates with prominent pores appear to represent thecal attachments of the broad-based trematocystinid holocystitid Paulicystis. Thick-walled, steep-sided structures composed of five to seven fused or partially fused plates with less prominent pores, a deep stelar depression, and radiating canals appear to represent thecal attachments of undetermined, possibly holocystinid or pentacystinid holocystitids. All diploporite holdfasts are cemented to fine-grained, well-sorted skeletal substrates on elevated crests of the hardground surface, but are not found on microbioherms.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archer, A. W. and Feldman, H. R. 1986. Microbioherms of the Waldron Shale (Silurian, Indiana): implications for organic framework in Silurian reefs of the Great Lakes area. Palaios, 1:133140.Google Scholar
Billings, E. 1857. New species of fossils from Silurian rocks of Canada. Canada Geological Survey Report of Progress for 1853–1856, Report for the year 1859, p. 247345.Google Scholar
Bockelie, J. F. 1984. The Diploporita of the Oslo region, Norway. Palaeontology, 27:168.Google Scholar
Boucot, A. J. 1999. Some Wenlockian–Gedinnian, chiefly brachiopod-dominated, communities of North America, p. 549591. In Boucot, A. J. and Lawson, J. D. (eds.), Paleocommunities: A Case Study from the Silurian and Lower Devonian. Cambridge University Press, Cambridge.Google Scholar
Brett, C. E. 1981. Terminology and functional morphology of attachment structures in pelmatozoan echinoderms. Lethaia, 14:343370.Google Scholar
Brett, C. E. 1984. Autecology of Silurian pelmatozoan echinoderms. In Bassett, M. G. and Lawson, J. D. (eds.), Autecology of Silurian Organisms. Special Papers in Palaeontology, 32:87120.Google Scholar
Brett, C. E. 1995. Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. Palaios, 10:597616.Google Scholar
Brett, C. E. and Liddell, W. D. 1978. Preservation and paleoecology of a Middle Ordovician hardground community. Paleobiology, 4:329348.Google Scholar
Brett, C. E., Cramer, B. D., McLaughlin, P. I., Kleffner, M. A., Showers, W. J., and Thomka, J. R. 2012. Revised Telychian–Sheinwoodian (Silurian) stratigraphy of the Laurentian mid-continent: building uniform nomenclature along the Cincinnati Arch. Bulletin of Geosciences, 87:733753.Google Scholar
Broadhead, T. W. 1980. Blastozoa, p. 118132. In Broadhead, T. W. and Waters, J. A. (eds.), Echinoderms: Notes for a Short Course. University of Tennessee Studies in Geology 3.Google Scholar
Chauvel, J. 1941. Recherches sur les Cystoïdes et les Carpoïdes armoricains. Mémoires de la Société Géologique et Minéralogique de Bretagne, 5:1286.Google Scholar
Dornbos, S. Q. 2006. Evolutionary palaeoecology of early epifaunal echinoderms: response to increasing bioturbation levels during the Cambrian radiation. Palaeogeography, Palaeoclimatology, Palaeoecology, 237:225239.Google Scholar
Ehrenberg, K. 1944. Ergänzende Bemerkungen zu den Seinerzeit aus dem Miozän von Burgschleinitz beschreibenen Gangerkern und Bauten dekapoder Krebse. Paläontologische Zeitschrifte 23:345359.Google Scholar
Foerste, A. F. 1897. A report on the middle and upper Silurian rocks of Clark, Jefferson, Ripley, Jennings, and southern Decatur Counties, Indiana. Indiana Department of Geology and Natural Resources Annual Report, 21:213288.Google Scholar
Foerste, A. F. 1929. The correlation of the Silurian section of Adams and Highland Counties with that of the Springfield area. Ohio Journal of Science, 29:168169.Google Scholar
Foerste, A. F. 1931. The paleontology of Kentucky. III. Silurian fauna. Kentucky Geological Survey Bulletin, 36:236320.Google Scholar
Frazén-Bengtson, C. 1983. Radial perforations in crinoid stems from the Silurian of Gotland. Lethaia, 16:291302.Google Scholar
Frest, T. J. 2005. Ampheristocystis, a Silurian (lower Wenlock) eocrinoid (Echinodermata, Blastozoa) from Indiana. Geological Journal, 40:301329.Google Scholar
Frest, T. J., Brett, C. E., and Witzke, B. J. 1999. Caradocian to Gedinnian echinoderm associations of central and eastern North America, p. 638783. In Boucot, A. J. and Lawson, J. D. (eds.), Paleocommunities: A Case Study from the Silurian and Lower Devonian. Cambridge University Press, Cambridge.Google Scholar
Frest, T. J., Mikulic, D. G., and Paul, C. R. C. 1977. New information on the Holocystites Fauna (Diploporita) of the middle Silurian of Wisconsin, Illinois, and Indiana. Fieldana, Geology, 35:83108.Google Scholar
Frest, T. J., Strimple, H. L., and Paul, C. R. C. 2011. The North American Holocystites fauna (Echinodermata, Blastozoa: Diploporita): Paleobiology and systematics. Bulletins of American Paleontology, 380, 141 p.Google Scholar
Gil Cid, M. D. and Domínguez-Alonso, P. 2000. Attachment strategies in Diploporita inhabiting soft-substratum communities, p. 8386. In Barker, M. (ed.), Echinoderms 2000. Swets and Zeitlinger, Lisse.Google Scholar
Gil Cid, M. D. and García-Rincón, J. M. 2012. Thecal (oral zone) elements in cystoids from Spain. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 264:181190.Google Scholar
Guensberg, T. E. and Sprinkle, J. 1992. Rise of echinoderms in the Paleozoic evolutionary fauna: significance of paleoenvironmental controls. Geology, 20:407410.Google Scholar
Gutiérrez-Marco, J. C. and Colmenar, J. 2011. Biostratigraphy of the genus Calix (Echinodermata, Diploporita) in the Middle Ordovician of the southern central Iberian Zone (Spain), p. 189197. In Gutiérrez-Marco, J. C., Rábano, I., and García-Bellido, D. (eds.), Ordovician of the World. Instituto Geológico y Minero de España, Cuadernos del Museo Geominero, 14.Google Scholar
Hall, J. 1861. Descriptions of new species of fossils: From the investigations of the survey, p. 952. Report of the Superintendent of the Geological Survey Exhibiting the Progress of the Work. Madison, Wisconsin.Google Scholar
Hall, J. 1864. Account of some new or little known species of fossils from rocks of the age of the Niagara Group. Albany, New York, 16 p.Google Scholar
Hall, J. 1868. Account of some new or little known species of fossils from rocks of the age of the Niagara Group. New York State Cabinet of Natural History, 20:305401.Google Scholar
Hisinger, W. 1828. Anteckningar i Physik och Geognosi under resor uti Sverige och Norrige, 4. Stockholm, 258 p.Google Scholar
Johnson, M. E. 2006. Relationship of Silurian sea-level fluctuations to oceanic episodes and events. GFF, 128:115121.CrossRefGoogle Scholar
Lefebvre, B. and Fatka, O. 2003. Palaeogeographical and palaeoecological aspects of the Cambro–Ordovician radiation of echinoderms in Gondwanan Africa and peri-Gondwanan Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 195:7397.Google Scholar
Lehnert, O., Männik, P., Joachimski, M. M., Calner, M., and Frýda, J. 2010. Paleoclimate perturbations before the Sheinwoodian glaciation: A trigger for extinctions during the ‘Ireviken event'. Palaeogeography, Palaeoclimatology, Palaeoecology, 196:320331.CrossRefGoogle Scholar
Lewis, R. D. 1982. Holdfasts. In Sprinkle, J. (ed.), Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions Monograph, 1:5764.Google Scholar
Loydell, D. K. 1998. Early Silurian sea-level changes. Geological Magazine, 135:447471.Google Scholar
Loydell, D. K. 2007. Early Silurian positive δ13C excursions and their relationship to glaciations, sea-level changes and extinction events. Geological Journal, 42:531546.Google Scholar
McLaughlin, P. I., Cramer, B. D., Brett, C. E., and Kleffner, M. A. 2008. Silurian high-resolution stratigraphy on the Cincinnati Arch: Progress on recalibrating the layer-cake, p. 119180. In Maria, A. H. and Counts, R. C. (eds.), From the Cincinnati Arch to the Illinois Basin: Geological Field Excursions along the Ohio River Valley. Geological Society of America Field Guide 12.Google Scholar
Meek, F. B. and Worthen, A. H. 1868. Palaeontology of Illinois. Illinois Geological Survey Report 3:289565.Google Scholar
Miller, S. A. 1878. Description of eight new species of Holocystites from the Niagara group. Journal of the Cincinnati Society of Natural History, 1:129136.Google Scholar
Miller, S. A. 1889. North American Geology and Palaeontology. Western Methodist Book Concern, Cincinnati, Ohio, 664 p.Google Scholar
Miller, S. A. 1891. Advance Sheets from the Seventeenth Report of the Geological Survey of Indiana: Palaeontology. Indianapolis, Indiana, 94 p.Google Scholar
Moore, R. C., Jeffords, R. M., and Miller, T. H. 1968. Morphological features of crinoid columns. University of Kansas Paleontological Contributions, Echinodermata, 8:130.Google Scholar
Müller, J. 1854. Über den Bau der Echinodermen. Königlichen Preussische Akademie der Wissenschaft, Abhandlungen, 1854:123219.Google Scholar
Neumayr, M. 1889. Die Stämme des Thierreiches: Wirbellose Thiere. F. Tempsky, Vienna and Prague, 603 p.Google Scholar
Paul, C. R. C. 1971. Revision of the Holocystites fauna (Diploporita) of North America. Fieldiana, Geology, 26:1166.Google Scholar
Paul, C. R. C. 1973. British Ordovician cystoids, Part 1. Palaeontographical Society Monographs, 127:164.Google Scholar
Paul, C. R. C. 1988. The phylogeny of the cystoids, p. 199213. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolution. Clarendon Press, Oxford.Google Scholar
Paul, C. R. C. and Bockelie, J. F. 1983. Evolution and functional morphology of the cystoid Sphaeronites in Britain and Scandinavia. Palaeontology, 26:687734.Google Scholar
Pinsak, A. P. and Shaver, R. H. 1964. The Silurian formations of northern Indiana. Indiana Geological Survey Bulletin, 32:87 p.Google Scholar
Ross, C. A. and Ross, J. P. R. 1996. Silurian sea-level fluctuations. In Witzke, B. J., Ludvigsen, G. A., and Day, J. (eds.), Paleozoic Sequence Stratigraphy: Views from the North American Craton. Geological Society of America Special Paper, 306:187192.Google Scholar
Rouault, M. 1851. Mémoire sur le terrain paléozoïque des environs de Rennes. Bulletin de la Société Géologique de France, 8:358399.Google Scholar
Sardeson, F. W. 1908. Discoid crinoidal roots and Camarocrinus . Journal of Geology, 16:239254.Google Scholar
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Harvard University Museum of Comparative Zoology Special Publication, 283 p.Google Scholar
Sprinkle, J. and Guensberg, T. E. 1995. Origin of echinoderms in the Paleozoic Evolutionary Fauna: The role of substrates. Palaios, 10:437453.Google Scholar
Sumrall, C. D., Brett, C. E., Dexter, T. A., and Bartholomew, A. 2009. An enigmatic blastozoan echinoderm fauna from central Kentucky. Journal of Paleontology, 83:739749.Google Scholar
Winchell, A. and Marcy, O. 1865. Enumeration of fossils collected in the Niagara Limestone of Chicago, Ill., with descriptions of several new species. Boston Society of Natural History Memoirs, 1:81113.Google Scholar
Witkze, B., Frest, T. J., and Strimple, H. L. 1979. Biogeography of the Silurian—Lower Devonian echinoderms, p. 117129. In Gray, J. and Boucot, A. J. (eds.), Historical Biogeography, Plate Tectonics, and the Changing Environment. University of Oregon Press, Corvallis.Google Scholar
Zamora, S., Clausen, S., Alvaro, J. J., and Smith, A. B. 2010. Pelmatozoan echinoderms as colonizers of carbonate firmgrounds in mid-Cambrian high energy environments. Palaios, 25:764768.CrossRefGoogle Scholar