Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T19:54:36.552Z Has data issue: false hasContentIssue false

Dinoflagellates, Sporomorphs, and Other Palynomorphs from the Upper Pliocene St. Erth Beds of Cornwall, Southwestern England

Published online by Cambridge University Press:  11 August 2017

Martin J. Head*
Affiliation:
Department of Geology, Earth Sciences Centre, University of Toronto, Toronto, Ontario, M5S 3B1 Canada

Abstract

Palynological analysis of the highly fossiliferous marine clays of the St. Erth Beds of Cornwall has revealed the presence of dinoflagellates, acritarchs and prasinophytes, scolecodonts, microforaminiferal linings, freshwater? invertebrates, freshwater algal spores, embryophyte spores and pollen, fungal spores, and plant cuticles. These groups are documented here and several, including the dinoflagellates, are reported from the St. Erth Beds for the first time.

The marine clays were deposited in warm, shallow waters of an inlet or embayment during a probable high stand in sea level. They are generally held to be of late Pliocene age, planktonic foraminiferal evidence placing them at between 1.9 and 2.1 Ma (late late Pliocene). Dinoflagellates are consistent with a late Pliocene age. Spores and pollen, if not reworked, suggest placement no higher than the lower part of the Tiglian Stage (upper Pliocene) of The Netherlands.

Analysis of all palynological groups permits terrestrial and marine climates to be evaluated independently. The spore-pollen assemblage has some thermophilic elements but mainly reflects a cool-temperate terrestrial climate. In contrast, dinoflagellates—dominated by gymnodinialean? and protoperidinioid cysts—indicate warm inner neritic waters and present some evidence for subtropical to tropical conditions with winter sea-surface temperatures above 15°. Increased influence of the Gulf Stream during the late Pliocene, perhaps superimposed upon a phase of global warming, is hypothesized to explain these differentially elevated marine temperatures.

The St. Erth inlet was not markedly brackish or hypersaline judging from the dinoflagellates, but rare freshwater algal spores attest either to some freshwater input or redeposition from sandy soils during marine incursion. High abundance of scolecodonts, about 1,500 to 2,000 per gram dry weight of sediment, allows speculation that the inlet hosted a thriving association of latest Pliocene marine annelid worms.

A species of algae incertae sedis, Halodinium scopaeum, and three species of dinoflagellate, Algidasphaeridium? euaxum, Sumatradinium pliocenicum, and Trinovantedinium sterthense, are proposed as new. The dinoflagellate genus Selenopemphix Benedek, 1972, is emended herein. Quinquecuspis Harland, 1977, is now validated by the transfer of Trinovantedinium concretum Reid, 1978, to Quinquecuspis Harland, 1977, as Q. concreta n. comb.

Type
Research Article
Copyright
Copyright © 1993, by the Paleontological Society, Inc. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R. J., and Morton, J. K. 1976. An Atlas of Pollen of the Trees and Shrubs of Eastern Canada and the Adjacent United States. Part III. Leguminosae to Cornaceae. University of Waterloo Biology Series, Number 10:137.Google Scholar
Agardh, C. A. 1824. Systema Algarum. Lundae, XXXVIII and 312 p. [Reprinted: Editio Anastatica Amstelodami, A. Asher and Co., Amsterdam, 1965.].Google Scholar
Aguirre, E., and Pasini, G. 1985. The Pliocene–Pleistocene boundary. Episodes, 8:116120.Google Scholar
Aksu, A. E., de Vernal, A., and Mudie, P. J. 1989. High resolution foraminiferal, palynological and stable isotopic records of upper Pleistocene sediments from Labrador Sea: paleoclimatic and paleoceanographic trends, p. 617652. In Srivastava, S. P., Arthur, M. A., Clement, B., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
Anderson, D. M., Jacobson, D. M., Bravo, I., and Wrenn, J. H. 1988. The unique, microreticulate cyst of the naked dinoflagellate Gymnodinium catenatum . Journal of Phycology, 24:255262.Google Scholar
Anderson, R. S., Homola, R. L., Davis, R. B., and Jacobson, G. L. Jr. 1984. Fossil remains of the micorrhizal fungal Glomus fasciculatum complex in postglacial lake sediments from Maine. Canadian Journal of Botany, 62:23252328.Google Scholar
Artzner, D. G., and Dörhöfer, G. 1978. Taxonomic note: Lejeunecysta nom. nov. pro. Lejeunia Gerlach 1961 emend. Lentin and Williams 1976—dinoflagellate cyst genus. Canadian Journal of Botany, 56:13811382.Google Scholar
Balech, E. 1974. El genero ‘Protoperidinium’ Bergh, 1881 (‘Peridinium’ Ehrenberg, 1831, partim.). Revista del Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Hidrobiologia, 4(1):179.Google Scholar
Barnett, H. L., and Hunter, B. B. 1972. Illustrated Genera of Imperfect Fungi. Burgess Publishing Company, Minneapolis, 241 p.Google Scholar
Barss, M. S., Bujak, J. P., and Williams, G. L. 1979. Palynological zonation and correlation of sixty-seven wells, eastern Canada. Geological Survey of Canada, Paper 78-24:1117.Google Scholar
Bassett, M. G. 1985. Towards a common language in stratigraphy. Episodes, 8:8792.CrossRefGoogle Scholar
, A. W. H. 1977. An ecological zoogeographic and taxonomic review of Recent planktonic foraminifera, p. 188. In Ramsay, A. T. S. (ed.), Oceanic Micropalaeontology, Vol. 1. Academic Press, London, New York.Google Scholar
Bell, R. W. [R. G.] 1887. The Pliocene beds of St. Erth. Transactions of the Royal Geological Society of Cornwall, 11:4550.Google Scholar
Benedek, P. N. 1972. Phytoplanktonten aus dem Mittel- und Oberoligozän von Tönisberg (Niederrheingebiet). Palaeontographica, Abt. B, 137:171.Google Scholar
Benedek, P. N. 1980. Vorläufige Ergebnisse der Phytoplankton-Untersuchungen aus dem nordwesteuropäischen Teriärbecken, p. 8792. In Vinken, R. and Meyer, K.-J. (eds.), IGCP Project 124, The Northwest European Tertiary Basin, Report 6. International Geological Correlation Programme—National Committee of the Federal Republic of Germany, Hannover.Google Scholar
Benedek, P. N., and Sarjeant, W. A. S. 1981. Dinoflagellate cysts from the Middle and Upper Oligocene of Tönisberg (Niederrheingebiet): a morphological and taxonomic restudy. Nova Hedwigia, 35:313356.Google Scholar
Berch, S. M., and Warner, B. G. 1985. Fossil vesicular-arbuscular mycorrhizal fungi: two Glomus species (Endogonaceae, Zygomycetes) from late Quaternary deposits in Ontario, Canada. Review of Palaeobotany and Palynology, 45:229237.Google Scholar
Berggren, W. A., Kent, D. V., and Van Couvering, J. A. 1985. Neogene geochronology and chronostratigraphy, p. 211260. In Snelling, N. J. (ed.), The Chronology of the Geological Record. The Geological Society (London), Memoir 10.Google Scholar
Bergh, R. S. 1881. Bidrag til Cilioflagellaternes Naturhistorie. Forelobige meddelelser. Dansk Naturhistoriskforening i Kjobenhavn, Videnskabelige Meddelelser, Series 4, 3:6076.Google Scholar
Berkeley, M. J., and Broome, C. E. 1850. Notices of British fungi. Annals and Magazine of Natural History, 2, 5:459.Google Scholar
Biffi, U., and Grignani, D. 1983. Peridinioid dinoflagellate cysts from the Oligocene of the Niger Delta, Nigeria. Micropaleontology, 29:126145.Google Scholar
Biffi, U., and Manum, S. B. 1988. Late Eocene–early Miocene dinoflagellate cyst stratigraphy from the Marche Region (Central Italy). Bollettino della Societá Paleontologica Italiana 27:163212.Google Scholar
Bilodeau, G., de Vernal, A., Hillaire-Marcel, C., and Josenhans, H. 1990. Postglacial paleoceanography of Hudson Bay: stratigraphic, microfaunal, and palynological evidence. Canadian Journal of Earth Sciences, 27:946963.CrossRefGoogle Scholar
Bint, A. N. 1988. Recent dinoflagellate cysts from Mermaid Sound, northwestern Australia, p. 329341. In Jell, P. A. and Playford, G. (eds.), Palynological and Palaeobotanical Studies in Honour of Basil E. Balme. Association of Australian Paleontologists, Memoir 5.Google Scholar
Birks, H. J. B., and Birks, H. H. 1980. Quaternary Paleoecology. E. Arnold, London, 289 p.Google Scholar
Bleil, U. 1989. Magnetostratigraphy of Neogene and Quaternary sediment series from the Norwegian Sea: Ocean Drilling Program, Leg 104, p. 829901. In Eldholm, O., Thiede, J., Taylor, E., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 104. Ocean Drilling Program, College Station, Texas.Google Scholar
Bold, H. C., and Wynne, M. J. 1985. Introduction to the Algae, 2nd edition. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 720 p.Google Scholar
Bolkhovitina, N. A. 1953. Spore-pollen characteristics of the Cretaceous deposits of the central USSR. Trudy Instituta Geologicheskikh Nauk, Akademiya Nauk, S.S.S.R., 145(61):1183. (In Russian.).Google Scholar
Bradford, M. R. 1975. New dinoflagellate cyst genera from the Recent sediments of the Persian Gulf. Canadian Journal of Botany, 53:30643074.Google Scholar
Bradford, M. R., and Wall, D. A. 1984. The distribution of Recent organic-walled dinoflagellate cysts in the Persian Gulf, Gulf of Oman, and northwestern Arabian Sea. Palaeontographica, Abt. B, 192:1684.Google Scholar
Bradley, W. H. 1967. Two aquatic fungi (Chytridiales) of Eocene age from the Green River Formation of Wyoming. American Journal of Botany, 54:577582.Google Scholar
Brinkkamper, O., Van Geel, B., and Wiegers, J. 1987. Palaeoecological study of a middle-pleniglacial deposit from Tilligte, The Netherlands. Review of Palaeobotany and Palynology, 51:235269.Google Scholar
Brook, A. J. 1981. The Biology of Desmids. Botanical Monographs, Vol. 16. Blackwell Scientific Publications, Oxford, 276 p.Google Scholar
Brown, S., and Downie, C. 1985. Dinoflagellate cyst stratigraphy of Paleocene to Miocene sediments from the Goban Spur (sites 548–550, Leg 80), p. 643651. In de Graciansky, P. C., Poag, C. W., et al., Initial Reports of the Deep Sea Drilling Project, 81. U.S. Government Printing Office, Washington, D.C. Google Scholar
Bujak, J. P. 1980. Dinoflagellate cysts and acritarchs from the Eocene Barton Beds of southern England, p. 3691. In Bujak, J. P., Downie, C., Eaton, G. L., and Williams, G. L., Dinoflagellate Cysts and Acritarchs from the Eocene of Southern England. The Palaeontological Association, Special Papers in Palaeontology, 24.Google Scholar
Bujak, J. P. 1984. Cenozoic dinoflagellate cysts and acritarchs from the Bering Sea and northern North Pacific, DSDP Leg 19. Micropalaeontology, 30:180212.Google Scholar
Bujak, J. P., and Davies, E. H. 1983. Modern and fossil Peridiniineae. American Association of Stratigraphic Palynologists, Contributions Series, 13:1203.Google Scholar
Bujak, J. P., Downie, C., Eaton, G. L., and Williams, G. L. 1980. Dinoflagellate cysts and acritarchs from the Eocene of southern England. The Palaeontological Association, Special Papers in Palaeontology, 24:1100.Google Scholar
Bujak, J. P., and Matsuoka, K. 1986. Late Cenozoic dinoflagellate cyst zonation in the western and northern Pacific, p. 725. In Wrenn, J. H., Duffield, S. L., and Stein, J. A. (eds.), Papers from the First Symposium on Neogene Dinoflagellate Cyst Biostratigraphy. American Association of Stratigraphic Palynologists Contributions Series, 17.Google Scholar
Bukry, D. 1973. Low-latitude coccolith biostratigraphic zonation, p. 685703. In Edgar, N. T., Saunders, J. B., et al., Initial Reports of the Deep Sea Drilling Project, 15. U.S. Government Printing Office, Washington, D.C. Google Scholar
Bukry, D. 1978. Cenozoic coccolith and silicoflagellate stratigraphy, offshore northwest Africa, Deep Sea Drilling Project Leg 41, p. 689707. In Lancelot, Y., Seibold, E., et al., Initial Reports of the Deep Sea Drilling Project, 41. U.S. Government Printing Office, Washington, D.C. Google Scholar
Bütschli, O. 1885. Protozoa. II. Abtheilung: Mastigophora, p. 8651088. In Bronn, H. G. (ed.), Klassen und Ordnungen des Tierreiches, Vol. 1. C. F. Winter, Leipzig.Google Scholar
Cameron, T. D. J., Bonny, A. P., Gregory, D. M., and Harland, R. 1984. Lower Pleistocene dinoflagellate cyst, foraminiferal and pollen assemblages in four boreholes in the southern North Sea. Geological Magazine, 121:8597.Google Scholar
Campbell, I. D. 1991. Mechanical destruction of pollen grains. Palynology, 15:2933.Google Scholar
Charollais, J., Hochuli, P. A., Oertli, H. J., Perch-Nielsen, K., Toumarkine, M., Rögl, F., and Pairis, J.-L. 1980. Les Marnes à Foraminifères et les Shistes à Meletta des chaînes subalpines septentrionales (Haute-Savoie, France). Eclogae géologicae Helvatiae, 73:969.Google Scholar
Clement, B. M., Hall, F. J., and Jarrard, R. D. 1989. The magnetostratigraphy of the Ocean Drilling Program Leg 105 sediments, p. 583595. In Srivastava, S. P., Arthur, M. A., and Clement, B., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
Clet-Pellerin, M., and Morzadec-Kerfourn, M.-T. 1985. Palynologie et paléogéographie de sédiments marins Reuveriens a Tigliens de Bretagne et de Normandie: un essai de synthèse. Sciences Géologiques, Bulletin, 38:7378.Google Scholar
Cookson, I. C. 1947. Plant microfossils from the lignites of Kerguelen Archipelago. British, Australian and New Zealand [B.A.N.Z.] Antarctic Research Expedition (1929–1931), Reports Series A, 2/8:127142.Google Scholar
Cookson, I. C., and Eisenack, A. 1962. Some Cretaceous and Tertiary microfossils from Western Australia. Proceedings of the Royal Society of Victoria, 75:269273.Google Scholar
Cookson, I. C., and Eisenack, A. 1967a. Some early Tertiary microplankton and pollen grains from a deposit near Strahan, western Tasmania. Proceedings of the Royal Society of Victoria, 80:131140.Google Scholar
Cookson, I. C., and Eisenack, A. 1967b. Some microplankton from the Paleocene Rivernook Bed, Victoria. Proceedings of the Royal Society of Victoria, 80:247257.Google Scholar
Corda, A. C. C. 1836. Mykologische Beobachtungen, p. 80 et seq. In Wietenweber, W. R., Beiträge zur gesammten Natur-und Heilwissenschaften. Prague.Google Scholar
Corradini, D., and Biffi, U. 1988. Étude des dinokystes à la limite Messinien–Pliocène dans la coupe Cava Serredi, Toscane, Italie. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 12:221236.Google Scholar
Costa, L. I., and Downie, C. 1979. Cenozoic dinocyst stratigraphy of Sites 403 to 406 (Rockall Plateau), IPOD, Leg 48, p. 513529. In Montadert, L., Roberts, D. G., et al., Initial Reports of the Deep Sea Drilling Project, 48. U.S. Government Printing Office, Washington, D.C. Google Scholar
Couper, R. A. 1960. New Zealand Mesozoic and Cainozoic plant microfossils. New Zealand Geological Survey, Paleontology Bulletin, 32:187.Google Scholar
Crabtree, D. R. 1988. Mid-Cretaceous ferns in situ from the Albino Member of the Mowry Shale, southwestern Montana. Palaeontographica, Abt. B, 209(1–3):127.Google Scholar
Crepet, W. L., and Daghlian, C. P. 1981. Lower Eocene and Paleocene Gentianaceae: floral and palynological evidence. Science, 214:7577.Google Scholar
Damon, S. C. 1952. Type studies in Dictyosporium, Spieria, and Cattanea . Lloydia, 15:110124.Google Scholar
Daniels, C. H. V., Lund, J. J., Lund-Christensen, J., and Uffenorde, H. 1990. The Langenfeldian (Miocene) of Groβ Pampau, Schleswig-Holstein. Foraminifer, dinocyst, and ostracod stratigraphy and paleoecology (preliminary account). Veröffentlichungen aus dem Übersee-Museum, Bremen, Reihe A, 10:1138.Google Scholar
de Bary, A. A. 1858. Untersuchungen über die Familie der Conjugaten (Zygnemeen und Desmidieen). Ein Beitrag zur physiologischen und beschreibenden Botanik. Förstnersche Buchhandlung, Leipzig, 91 p.Google Scholar
De Coninck, J. 1965. Microfossiles planctoniques du Sable Yprésien à Merelbeke. Dinophyceae et Acritarcha. Académie royale de Belgique, Classe des Sciences, Mémoires, Collection 8°, 36(2):156.Google Scholar
De Coninck, J. 1969. Dinophyceae et Acritarcha de l'Yprésien du Sondage de Kallo. Institut Royal des Sciences Naturelles de Belgique, Mémoire 161:167. [Printed, 1968.].Google Scholar
De Coninck, J. 1975. Microfossiles à paroi organique de l'Yprésien du Bassin belge. Service Géologique de Belgique, Professional Paper 1975 No. 12:1151.Google Scholar
De Coninck, J. 1977. Organic walled microfossils from the Eocene of the Woensdrecht borehole, southern Netherlands. Mededelingen Rijks Geologische Dienst, Nieuwe Serie, 28:3463.Google Scholar
De Coninck, J. 1986. Organic walled phytoplankton from the Bartonian and Eo-Oligocene transitional deposits of the Woesdrecht Borehole, southern Netherlands. Mededelingen Rijks Geologische Dienst, Nieuwe Serie, 40-2:149.Google Scholar
de Jong, J. 1988. Climatic variability during the past three million years, as indicated by vegetational evolution in northwest Europe and with emphasis on data from The Netherlands, p. 603617. In Shackleton, N. J., West, R. G., and Bowen, D. Q. (eds.), The Past Three Million Years: Evolution of Climatic Variability in the North Atlantic Region. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 318(1191).Google Scholar
de Vernal, A., Bilodeau, G., Hillaire-Marcel, C., and Kassou, N. 1992a. Quantitative assessment of carbonate dissolution in marine sediments from foraminifer linings vs. shell ratios: Davis Strait, northwest North Atlantic. Geology, 20:527530.Google Scholar
de Vernal, A., Goyette, C., and Rodrigues, C. G. 1989. Contribution palynostratigraphique (dinokystes, pollen et spores) à la connaissance de la mer de Champlain: coupe de Saint-Césaire, Québec. Canadian Journal of Earth Sciences, 26:24502464.Google Scholar
de Vernal, A., Londeix, L., Mudie, P. J., Harland, R., Morzadec-Kerfourn, M. T., Turon, J.-L., and Wrenn, J. H. 1992b. Quaternary organic-walled dinoflagellate cysts of the North Atlantic Ocean and adjacent seas: ecostratigraphy and biostratigraphy, p. 289328. In Head, M. J. and Wrenn, J. H. (eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas.Google Scholar
de Vernal, A., and Mudie, P. J. 1989a. Pliocene and Pleistocene palynostratigraphy at ODP Sites 646 and 647, eastern and southern Labrador Sea, p. 401422. In Srivastava, S. P., Arthur, M., Clement, B., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
de Vernal, A., and Mudie, P. J. 1989b. Late Pliocene to Holocene palynostratigraphy at ODP Site 645, Baffin Bay, p. 387399. In Srivastava, S. P., Arthur, M., Clement, B., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
de Vernal, A., and Mudie, P. J. 1992. Pliocene and Quaternary dinoflagellate cyst stratigraphy in the Labrador Sea: Paleoenvironmental implications, p. 329346. In Head, M. J. and Wrenn, J. H. (eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
de Verteuil, L., and Norris, G. 1992. Miocene protoperidiniacean dinoflagellate cysts from the Maryland and Virginia coastal plain, p. 391430. In Head, M. J. and Wrenn, J. H. (eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
Deflandre, G. 1935. Considérations biologiques sur les microorganismes d'origine planctonique conservés dans les silex de la craie. Bulletin biologique de la France et de la Belgique, 69:213244.Google Scholar
Deflandre, G. 1937. Microfossiles des silex crétacés. Deuxième partie. Flagellés incertae sedis. Hystrichosphaeridés. Sarcodinés. Organismes divers. Annales de paléontologie, 26:51103.Google Scholar
Deflandre, G. 1954. Systématique des Hystrichosphaeridés: sur l'acception du genre Cymatiosphaera O. Wetzel. Compte rendu sommaire et bulletin de la Société géologique de France, 4(9–10):257258.Google Scholar
Deflandre, G. and Cookson, I. C. 1955. Fossil microplankton from Australian late Mesozoic and Tertiary sediments. Australian Journal of Marine and Freshwater Research, 6:242313.Google Scholar
Deflandre, G., and Sarjeant, W. A. S. 1970. Nouvel examen de quelques holotypes de Dinoflagellés fossiles et d'Acritarches. Cahiers de micropaléontologie, séries 2, no. 1 (Archives originales, Centre de documentation, Centre national de la recherche scientifique, no. 466):110.Google Scholar
Dilcher, D. L. 1963. Eocene epiphyllous fungi. Science, 142(3593):667669.Google Scholar
Dilcher, D. L. 1965. Epiphyllous fungi from Eocene deposits in western Tennessee, U.S.A. Palaeontographica, Abt. B, 116:154.Google Scholar
Dixon, J., McNeil, D. H., Dietrich, J. R., Bujak, J. P., and Davies, E. H. 1984. Geology and biostratigraphy of the Dome Gulf et al. Hunt Kopanoar M-13 well, Beaufort Sea. Geological Survey of Canada, Paper 82-13:128.Google Scholar
Dodge, J. 1985. Atlas of Dinoflagellates. Farrand Press, London, 119 p.Google Scholar
Dodge, J. 1989. Some revisions of the family Gonyaulacaceae (Dinophyceae) based on a scanning electron microscope study. Botanica Marina, 32:275298.Google Scholar
Dörhöfer, G., and Davies, E. H. 1980. Evolution of archeopyle and tabulation in Rhaetogonyaulacinean dinoflagellate cysts. Royal Ontario Museum, Life Sciences Miscellaneous Publications, 91 p.Google Scholar
Downie, C., and Sarjeant, W. A. S. 1963. On the interpretation and status of some hystrichosphere genera. Palaeontology, 6:8396.Google Scholar
Downie, C., and Sarjeant, W. A. S. 1965. Bibliography and index of fossil dinoflagellates and acritarchs. Geological Society of America, Memoir 94:1180. [Dated December, 1964; appeared January, 1965 according to Lentin and Williams, 1989.].Google Scholar
Drugg, W. S. 1970. Two new Neogene species of Tuberculodinium and one of Xenicodinium (Pyrrhophyta). Proceedings Biological Society of Washington, 83:115122.Google Scholar
Drugg, W. S., and Loeblich, A. R. Jr. 1967. Some Eocene and Oligocene phytoplankton from the Gulf Coast, U.S.A. Tulane Studies in Geology, 5:181194.Google Scholar
Drugg, W. S., and Stover, L. E. 1975. Stratigraphic range charts, selected Cenozoic dinoflagellates and plates illustrating Cenozoic species. American Association of Stratigraphic Palynologists, Contributions Series, 4:7376.Google Scholar
Duane, A., and Harland, R. 1990. Late Quaternary dinoflagellate cyst biostratigraphy for sediments of the Porcupine Basin, offshore western Ireland. Review of Palaeobotany and Palynology, 63:111.Google Scholar
Duffield, S., and Stein, J. A. 1986. Peridiniacean-dominated dinoflagellate cyst assemblages from the Miocene of the Gulf of Mexico Shelf, offshore Louisiana, p. 2745. In Wrenn, J. H., Duffield, S. L., and Stein, J. A. (eds.), Papers from the First Symposium on Neogene Dinoflagellate Cyst Biostratigraphy. American Association of Stratigraphic Palynologists Contributions Series No. 17.Google Scholar
Edwards, L. E. 1986. Late Cenozoic dinoflagellate cysts from South Carolina, U.S.A., p. 4757. In Wrenn, J. H., Duffield, S. L., and Stein, J. A. (eds.), Papers from the First Symposium on Neogene Dinoflagellate Cyst Biostratigraphy. American Association of Stratigraphic Palynologists Contributions Series No. 17.Google Scholar
Edwards, L. E. 1992. New semiquantitative (paleo)temperature estimates using dinoflagellate cysts, an example from the North Atlantic Ocean, p. 6987. In Head, M. J. and Wrenn, J. H. (eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
Edwards, L. E., and Andrle, V. A. S. 1992. Distribution of selected dinoflagellate cysts in modern marine sediments, p. 259288. In Head, M. J. and Wrenn, J. H. (eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
Edwards, W. N. 1922. An Eocene microthyriaceous fungus from Mull, Scotland. Transactions of the British Mycological Society, 8:6669.Google Scholar
Ehrenberg, C. G. 1838. Über das Massenverhältniss der jetzt lebenden Kiesel-Infusorien und über ein neues Infusorien-Conglomerat als Polirschiefer von Jastraba in Ungarn. Abhandlungen der Preuβischen Akademie der Wissenschaften, 1836:109135.Google Scholar
El-Bassiouni, A. E., Ayyad, S. N., and El-Beialy, S. Y. 1988. On the Eocene/Oligocene boundary in Alam El-Bueib IX, Western Desert, Egypt. Revista Española de Micropaleontologia, 20:5970.Google Scholar
El-Beialy, S. Y. 1988a. Neogene palynostratigraphy of the El-Qawasim No. 1 well, Nile Delta, Egypt. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1988, H. 8:453463.Google Scholar
El-Beialy, S. Y. 1988b. Palynostratigraphy of the late Tertiary sediments in Kafr El-Dawar Well No. 1, Nile Delta, Egypt. Revue de Micropaléontologie, 30:249260.Google Scholar
El-Beialy, S. Y. 1990a. Tertiary dinoflagellate cysts from the Mit Ghamr-1 well, Nile Delta, Egypt. Review of Palaeobotany and Palynology, 63:259267.Google Scholar
El-Beialy, S. Y. 1990b. Palynology, palaeoecology, and dinocyst stratigraphy of the Oligocene through Pliocene succession in the Qantara-1 well, Eastern Nile Delta, Egypt. Journal of African Sciences, 11(3/4):291307.Google Scholar
Ellis, A. C., and Van Geel, B. 1978. Fossil zygospores of Debarya glyptosperma (de Bary) Wittr. (Zygnemataceae) in Holocene sandy soils. Acta Botanica Neerlandica, 27(5–6):389396.Google Scholar
Ellis, M. B. 1949. Tetraploa . The British Mycological Society, Transactions, 32:246251.Google Scholar
Ellis, M. B. 1971. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, United Kingdom, 608 p.Google Scholar
Ellis, M. B., and Ellis, J. P. 1985. Microfungi on Land Plants. An Identification Handbook. Croom Helm, London and Sidney, 818 p.Google Scholar
Elsik, W. C. 1969. Late Neogene palynomorph diagrams, Northern Gulf of Mexico. Gulf Coast Association of Geological Societies Transactions, 19:509528.Google Scholar
Ellis, M. B. 1976. Microscopic fungal remains and Cenozoic palynostratigraphy. Geoscience and Man, 15:115120.Google Scholar
Ellis, M. B. 1978. Classification and geologic history of the microthyriaceous fungi. Fourth International Palynological Conference, Lucknow 1976–1977, Proceedings, 1:331342.Google Scholar
Ellis, M. B., and Dilcher, D. C. 1974. Palynology and age of clays exposed in Lawrence clay pit, Henry County, Tennessee. Palaeontographica, Abt. B, 146:6587.Google Scholar
Evitt, W. R. 1963. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, I. Proceedings of the National Academy of Sciences, Washington, D.C., 49:158164.Google Scholar
Evitt, W. R. 1985. Sporopollenin Dinoflagellate Cysts: Their Morphology and Interpretation. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas, 333 p.Google Scholar
Fasola, A., Giffuni, G., Crespo de Cabrera, S., Paredes de Ramos, I., and Euribe, A. 1985. Estudios bioestratigraficos del intervalo Cretacico superior (Maestrichtiense) a Mioceno inferior en el Norte del Estado Guarico, Venezuela. Memorias del VI Congreso Geologico Venezolano (Caracas, Venezuela), 1:588.Google Scholar
Fechner, G. G., and Koch, T. 1991. In organischer Substanz erhaltenes Mikroplankton aus dem Unterpliozän der Insel Korfu (Griechenland). Geowissenschaftliche Abhandlungen, Reihe A, 134:83105.Google Scholar
Fensome, R. A., Williams, G. L., Barss, M. S., Freeman, J. M., and Hill, J. M. 1990. Acritarchs and fossil prasinophytes: an index to genera, species and infraspecific taxa. American Association of Stratigraphic Palynologists, Contributions Series Number 25:1771.Google Scholar
Fernandez, I. 1987. Primulaceae, p. 168174. In Valdéz, B., Díez, M. J., and Fernández, I. (eds.), Atlas polinico de Andalucia Occidental. Instituto de Desarrollo Regional No. 43, Universidad de Sevilla, Excma. Diputacion de Cadiz, Sevilla.Google Scholar
Fritsch, F. E. 1929. Evolutionary sequence and affinities among Protophyta. Biological Review, 4:103151.Google Scholar
Fukuyo, Y. 1980. Protoperidinium conicum (Gran) Balech. In Kenkyukai, Akashiwo (ed.), The working party on taxonomy, Sheet No. 59. [In Japanese.].Google Scholar
Garovaglio, S. 1875. Di alcuni nuovi funghi parasiti trovate dal dottore Achille Cattaneo, allievo practicante a Laboratoria Crittogamico, sugli argumi affeti dal mal della gomma e dalla gangrena . Reale Istituto Lombardo di Scienze e Lettere. Rendiconti, 2 series, 8:118126.Google Scholar
Gerlach, E. 1961. Mikrofossilien aus dem Oligozän und Miozän Nordwestdeutschlands, unter besonderer Berücksichtigung der Hystrichosphären und Dinoflagellaten. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 112:143228.Google Scholar
Germeraad, J. H. 1979. Fossil remains of fungi, algae and other organisms from Jamaica. Scripta Geologica (Leiden), 52:141.Google Scholar
Germeraad, J. H. 1980. Dispersed scolecodonts from Cainozoic strata of Jamaica. Scripta Geologica (Leiden), 54:124.Google Scholar
Gibbard, P. L., and Peglar, S. M. 1990. Palynology of the interglacial deposits at Little Oakley, Essex, and their correlation. Philosophical Transactions of the Royal Society of London, B (Biological Sciences), 328:341357.Google Scholar
Gibbard, P. L., West, R. G., Zagwijn, W. H., Balson, P. S., Burger, A. W., Funnell, B. M., Jeffery, D. H., de Jong, J., van Kolfschoten, T., Lister, A. M., Meijer, T., Norton, P. E. P., Preece, R. C., Rose, J., Stuart, A. J., Whiteman, C. A., and Zalasiewicz, J. A. 1991. Early and middle Pleistocene correlations in the southern North Sea Basin. Quaternary Science Reviews, 10:2352.Google Scholar
Glenn-Bott, J. I. 1951. Helicodendron giganteum n. sp. and other aerial-sporing hyphomycetes of submerged dead leaves. Transactions of the British Mycological Society, 34:275279.Google Scholar
Godwin, H. 1975. History of the British Flora. A Factual Basis for Phytogeography, 2nd edition. Cambridge University Press, Cambridge, United Kingdom, 541 p.Google Scholar
Graham, A. 1971. The role of myxomycete spores in palynology (with a brief note on the morphology of certain algal zygospores). Review of Palaeobotany and Palynology, 11:8999.Google Scholar
Graham, H. W. 1943. Gymnodinium catenatum, a new dinoflagellate from the Gulf of California. Transactions of the American Microscopical Society, 62:259261.Google Scholar
Gran, H. H. 1900. Hydrographic-biological studies of the North Atlantic Ocean and the coast of Nordland. Reports on Norwegian Fishery and Marine Investigation, 1(5):1222.Google Scholar
Greuter, W., Burdet, H. M., Chaloner, W. G., Demoulin, V., Grolle, R., Hawksworth, D. L., Nicolson, D. H., Silva, P. C., Stafleu, F. A., Voss, E. G., and McNeill, J. (eds.). 1988. International Code of Botanical Nomenclature: adopted by the Fourteenth International Botanical Congress, Berlin, July–August 1987. Regnum vegetabile, Vol. 118. Koeltz Scientific Books, Königstein, Germany, 328 p.Google Scholar
Haeckel, E. 1894. Entwurf eines natürlichen Systems der Organismen auf Grund ihrer Stammegeschichte, Erster Teil: Systematische Phylogenie der Protisten und Pflanzen. Georg Reimer, Berlin, 400 p.Google Scholar
Hansen, J. M. 1980. Morphological characterization of encrusting palynomorph green algae from the Cretaceous–Tertiary of central West Greenland and Denmark. Grana, 19:6777.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change, p. 71108. In:Wilgus, C. K., Hastings, B. S., et al., (eds.), Sea-Level Changes—An Integrated Approach. Society of Economic Paleontologists and Mineralogists, Special Publication No. 42.Google Scholar
Harland, R. 1977. Recent and late Quaternary (Flandrian and Devensian) dinoflagellate cysts from marine continental shelf sediments around the British Isles. Palaeontographica, Abt. B, 164:87126.Google Scholar
Harland, R. 1978. Quaternary and Neogene dinoflagellate cysts, p. 717. In Thusu, B. (ed.), Distribution of biostratigraphically diagnostic dinoflagellate cysts and miospores from the northwest European continental shelf and adjacent areas. Institutt for Kontinentalsokkelun-ders⊘kelser, Publication 100.Google Scholar
Harland, R. 1982. A review of Recent and Quaternary organic-walled dinoflagellate cysts of the genus Protoperidinium . Palaeontology, 25:369397.Google Scholar
Harland, R. 1983. Distribution maps of Recent dinoflagellate cysts in bottom sediments from the North Atlantic Ocean and adjacent seas. Palaeontology, 26:321387.Google Scholar
Harland, R. 1988a. Quaternary dinoflagellate cyst biostratigraphy of the North Sea. Palaeontology, 31:877903.Google Scholar
Harland, R. 1988b. Dinoflagellates, their cysts and Quaternary stratigraphy. New Phytologist, 108:111120.Google Scholar
Harland, R. 1992. Dinoflagellate cysts of the Quaternary system, p. 253273. In Powell, A. J. (ed.), A Stratigraphic Index of Dinoflagellate Cysts. British Micropalaeontological Society Publication Series. Chapman and Hall, London.Google Scholar
Harland, R., Bonny, A. P., Hughes, M. J., and Morigi, A. N. 1991. The lower Pleistocene stratigraphy of the Ormesby Borehole, Norfolk, England. Geological Magazine, 128:647660.Google Scholar
Harland, R., Reid, P. C., Dobell, P., and Norris, G. 1980. Recent and sub-Recent dinoflagellate cysts from the Beaufort Sea, Canadian Arctic. Grana, 9:211225.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A Geologic Time Scale 1989. Cambridge University Press, Cambridge, United Kingdom, 263 p.Google Scholar
Head, M. J. 1989. Dinoflagellate cysts from the Pliocene Coralline Crag deposits of Suffolk, eastern England: an SEM/LM study including new observations of wall ultrastructure for selected species. Fourth International Conference on Modern and Fossil Dinoflagellates (Marine Biological Laboratory, Woods Hole, Massachusetts). Program and Abstracts: 57.Google Scholar
Head, M. J. 1990a. Dinoflagellates and other palynomorphs from the uppermost Pliocene St. Erth Beds of Cornwall, southwestern England. American Association of Stratigraphic Palynologists, 23rd Annual Meeting (Banff Springs, Alberta). [Reprinted in Palynology, 15(1991):244–245.].Google Scholar
Head, M. J. 1990b. Zygnemataceous zygospores and other freshwater algal spores from the uppermost Pliocene St. Erth Beds of Cornwall, southwestern England. American Association of Stratigraphic Palynologists, 23rd Annual Meeting (Banff Springs, Alberta). [Reprinted in Palynology, 15(1991):244.].Google Scholar
Head, M. J. 1990c. Pliocene dinoflagellate cysts and paleoenvironments of the Coralline Crag deposits of Suffolk, eastern England. In North Sea '90: International Symposium to celebrate 25 years of palynology in the North Sea Basin. British Geological Survey, Nottingham, England. Abstracts (unpaginated).Google Scholar
Head, M. J. 1992. Zygospores of the Zygnemataceae (division Chlorophyta) and other freshwater algal spores from the uppermost Pliocene St. Erth Beds of Cornwall, southwestern England. Micropaleontology, 38:237260.Google Scholar
Head, M. J., and Norris, G. 1989. Palynology and dinocyst stratigraphy of the Eocene and Oligocene in ODP Leg 105 Hole 647A, Labrador Sea, p. 515550. In Srivastava, S. P., Arthur, M. A., Clement, B., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
Head, M. J., Norris, G., and Mudie, P. J. 1989a. Palynology and dinocyst stratigraphy of the upper Miocene and lowermost Pliocene, ODP Leg 105, Site 646, Labrador Sea, p. 423451. In Srivastava, S. P., Arthur, M. A., Clement, B., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
Head, M. J., Norris, G., and Mudie, P. J. 1989b. New species of dinocysts and a new species of acritarch from the upper Miocene and lowermost Pliocene, ODP Leg 105, Site 646, Labrador Sea, p. 453466. In Srivastava, S. P., Arthur, M. A., Clement, B., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
Head, M. J., Norris, G., and Mudie, P. J. 1989c. Palynology and dinocyst stratigraphy of the Miocene in ODP Leg 105, Hole 645E, Baffin Bay, p. 467514. In Srivastava, S. P., Arthur, M. A., Clement, B., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
Head, M. J., and Wrenn, J. H. (eds.). 1992. A forum on Neogene and Quaternary dinoflagellate cysts: the edited transcript of a round table discussion held at the Second Workshop on Neogene Dinoflagellates, p. 131. In Head, M. J. and Wrenn, J. H. (eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
Hedlund, R. W. 1965. Sigmopollis hispidus gen. et sp. nov. from Miocene sediments, Elko county, Nevada. Pollen et Spores, 7:8992.Google Scholar
Heilmann-Clausen, C., and Costa, L. I. 1989. Dinoflagellate zonation of the uppermost Paleocene? to lower Miocene in the Wursterheide Research Well, NW Germany. Geologisches Jahrbuch, Series A, 111:431521.Google Scholar
Herter, G. 1985. Palynologische Untersuchungen der Pliozän/Pleistozänen grenzschichten und eines (?Prä-Elsterzeitlichen) interglazials im Horloff-Graben/Wetterau. Palaeontographica, Abt. B, 195(1–4):1128.Google Scholar
Hilgen, F. J. 1991. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implications for the Geomagnetic Polarity Time Scale. Earth and Planetary Science Letters, 104:226244.Google Scholar
Hoshaw, R. W., and McCourt, R. M. 1988. The Zygnemataceae (Chlorophyta): a twenty-year update of research. Phycologia, 27:511548.Google Scholar
Houghton, S. D., and Jenkins, D. G. 1988. Subtropical microfossil indicators from the late Pliocene Celtic Sea. Marine Geology, 79:119126.Google Scholar
Ibrahim, A. C. 1933. Sporenformen des Ägirhorizonts des Ruhr-reviers. Konrad Triltsch, Würzburg, 47 p.Google Scholar
Ioakim, C. 1979. Etude comparative des dinoflagellés du Tertiaire Inférieur de la Mer du Labrador et de la Mer Nord. Unpubl. Ph.D. thesis, l'Université Pierre et Marie Curie, Paris, 204 p.Google Scholar
Ioannides, N. S., and McIntyre, D. J. 1980. A preliminary palynological study of the Caribou Hills outcrop section along the Mackenzie River, District of Mackenzie, p. 197208. In Report of Activities, Part B, Geological Survey of Canada, Paper 80-1A.Google Scholar
Islam, M. A. 1983. Dinoflagellate cyst taxonomy and biostratigraphy of the Eocene Bracklesham Group in southern England. Micropaleontology, 29:328353.Google Scholar
Iversen, J. 1944. Viscum, Hedera, and Ilex as climate indicators. Geologiska föreningens i Stockholm förhandlingar, 66:463483.Google Scholar
Jain, K. P., and Garg, R. 1991. “The fossil floras of Kachchh. IV—Tertiary palynostratigraphy” by Ranajit K. Kar (1985): a critique on dinoflagellate cysts. The Palaeobotanist, 39:5785.Google Scholar
Jan du Chene, R. 1977. Étude palynologique du Miocène supérieur Andalou (Espagne). Revista Española de Micropaleontologia, 9:97114.Google Scholar
Jan du Chene, R., and Londeix, L. 1988. Données nouvelles sur Achomosphaera andalousiense Jan du Chêne, 1977, kyste de dinoflagellé fossile. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 12:237250.Google Scholar
Jansonius, J., and Hills, L. V. 1976. Genera File of Fossil Spores and Pollen. Cards 1–3,287. Special Publication, Department of Geology, University of Calgary, Calary, Alberta, Canada.Google Scholar
Jansonius, J., and Hills, L. V. 1977. Genera file of fossil spores and pollen. Supplement 1: cards 3233–3431. Special Publication, Department of Geology, University of Calgary, Calgary, Alberta, Canada.Google Scholar
Jansonius, J., and Hills, L. V. 1987. Genera file of fossil spores and pollen. Supplement 9: cards 4361–4575. Special Publication, Department of Geology, University of Calgary, Calgary, Alberta, Canada.Google Scholar
Jarzen, D. M., and Elsik, W. C. 1986. Fungal palynomorphs recovered from Recent river deposits, Luangwa Valley, Zambia. Palynology, 10:3560.Google Scholar
Jenkins, D. G. 1982. The age and palaeoecology of the St. Erth Beds, southern England, based on planktonic foraminifera. Geological Magazine, 119:201205.Google Scholar
Jenkins, D. G., and Houghton, S. D. 1987. Age, correlation and paleoecology of the St. Erth Beds and the Coralline Crag of England. Mededelingen van de Werkgroep voor Tertiaire en Kwartaire Geologie, 24(1–2):147156.Google Scholar
Jenkins, D. G., King, C., and Hughes, M. 1989. Neogene, p. 537569. In Jenkins, D. G. and Murray, J. W. (eds.), Stratigraphical Atlas of Fossil Foraminifera, 2nd edition. British Micropalaeontological Society Series, Ellis Horwood Ltd., Chichester, United Kingdom.Google Scholar
Jenkins, D. G., Whittaker, J. E., and Carlton, R. 1986. On the age and correlation of the St. Erth Beds, S.W. England, based on planktonic foraminifera. Journal of Micropalaeontology, 5:93105.Google Scholar
Jones, M. R., and Clarke, G. C. S. 1981. The northwest European pollen flora, 25. Nymphaeaceae, p. 5767. In Punt, W. and Clarke, G. C. S. (eds.), The Northwest European Pollen Flora, III. Elsevier, Amsterdam.Google Scholar
Kar, R. K. 1979. Palynological fossils from the Oligocene sediments and their biostratigraphy in the district of Kutch, Western India. The Palaeobotanist, 26:1649.Google Scholar
Kar, R. K. 1985. The fossil floras of Kachchh-IV. Tertiary palynostratigraphy. The Palaeobotanist, 34:1279.Google Scholar
Kar, R. K., and Saxena, R. K. 1976. Algal and fungal microfossils from Matanomadh Formation (Paleocene), Kutch, India. The Paleobotanist, 23(1):215. (Issued April 1976 for 1974.).Google Scholar
Karsten, G. 1891. Untersuchungen über die Familie der Chroolepideen. Annales du Jardin Botanique de Buitenzorg, 10:166.Google Scholar
Kemp, E. M. 1975. Palynology of Leg 28 drill sites, Deep-Sea Drilling Project, p. 599623. In Hayes, D. E., Frakes, L. A., et al., Initial Reports of the Deep Sea Drilling Project, 28. U.S. Government Printing Office, Washington, D.C. Google Scholar
Kendrick, W. B., and Carmichael, J. W. 1973. Hyphomycetes, p. 323509. In Ainsworth, G. C., Sparrow, F. K., and Sussman, A. S. (eds.), The Fungi: An Advanced Treatise. Vol. IV A. A taxonomic Review with Keys: Ascomycetes and Fungi Imperfecti. Academic Press, New York.Google Scholar
Knüttel, S., Russell, M. D. Jr., and Firth, J. V. 1989. Neogene calcareous nannofossils from ODP Leg 105: implications for Pleistocene paleoceanographic trends, p. 245262. In Srivastava, S. P., Arthur, M. A., Clement, B., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
Kobayashi, S., and Matsuoka, K. 1984. Cyst and theca form of Protoperidinium conicum . The Japanese Journal of Phycology, 32:251256.Google Scholar
Köck, C. 1939. Fossile Kryptogamen aus der eozänen Braunkohle des Geiseltales. Nova Acta Leopoldina Deutshe Akademie der Naturforscher, New Series, 6:333359.Google Scholar
Kolev, S. M., Head, M. J., and Norris, G. 1992. Pliocene dinoflagellate-acritarch biostratigraphy and paleoecology integrated with magnetostratigraphy: DSDP Leg 93, Site 603, western North Atlantic. Geological Association of Canada and Mineralogical Association of Canada Joint Annual Meeting, Wolfville, Nova Scotia, Program with Abstracts, 17:A58.Google Scholar
Köthe, A. 1990. Paleogene dinoflagellates from northwest Germany. Geologisches Jahrbuch Reihe A, Heft 118:3111.Google Scholar
Krutzsch, W. 1959a. Mikropaläontologische (Sporenpaläontologische) Untersuchungen in der Braunkohle des Geiseltales. Beihefte zür Zeitschrift, Geologie, 8(21–22):1425.Google Scholar
Krutzsch, W. 1959b. Einige neue Formgattungen und -Arten von Sporen und Pollen aus der mitteleuropäischen Oberkreide und dem Tertiär. Palaeontographica, Abt. B, 105(5–6):125157.Google Scholar
Krutzsch, W. 1966. Zur Kenntnis der präquartären periporaten Pollenformen. Geologie Beihefte, 15(55):1671.Google Scholar
Krutzsch, W. 1967. Atlas der mittel- und jungtertiären dispersen Sporen- und Pollen-sowie der Mikroplankton formen des nördlichen Mitteleuropas. Lief IV and V. Weitere azonotrilete (apiculate, murornate), zonotrilete, monolete und alete Sporenformen. VEB Gustav Fischer Verlag, Jena, 231 p.Google Scholar
Krutzsch, W. 1970. Atlas der mittel- und jungtertiären dispersen Sporen- und Pollensowie der Mikroplanktonformen des nördlichen Mitteleuropas. Lieferung VII. Monoporate, monocolpate, longicolpate, dicolpate und ephedroide (polyplicate) Pollenformen. VEB Gustav Fischer Verlag, Jena, 175 p.Google Scholar
Krutzsch, W., Pchalek, J., and Spiegler, D. 1960. Tieferes Paläozän (?Montien) in Westbrandenburg. Proceedings XXI. International Geological Congress, Kopenhagen, Part VI:135143.Google Scholar
Kuhry, P. 1988. A paleobotanical and palynological study of Holocene peat from the El Bosque Mire, located in a volcanic area of the Cordillera Central of Colombia. Review of Palaeobotany and Palynology, 55:1972.Google Scholar
Lange, R. T. 1976. Fossil epiphyllous ‘germlings,’ their living equivalents and their palaeohabitat indicator value. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen (Stuttgart), 151:142165.Google Scholar
Lee, R. E. 1989. Phycology, 2nd edition. Cambridge University Press, Cambridge, United Kingdom, 645 p.Google Scholar
Lemmermann, E. 1910. Klasse Peridiniales, p. 563712, 869. In Kryptogamenflora der Mark Brandenburg und angrenzender Gebiete, III Algen I (Schizophyceen, Flagellaten, Peridineen). Gebrüder Borntraeger, Leipzig.Google Scholar
LeNoir, E. A., and Hart, G. F. 1986. Burdigalian (Early Miocene) dinocysts from offshore Louisiana, p. 5981. In Wrenn, J. H., Duffield, S. L., and Stein, J. A. (eds.), Papers from the First Symposium on Neogene Dinoflagellate Cyst Biostratigraphy. American Association of Stratigraphic Palynologists, Contributions Series, 17.Google Scholar
LeNoir, E. A., and Hart, G. F. 1988. Palynofacies of some Miocene sands from the Gulf of Mexico, offshore Louisiana, U.S.A. Palynology, 12:151166.Google Scholar
Lentin, J. K., and Williams, G. L. 1976. A monograph of fossil peridinioid dinoflagellate cysts. Bedford Institute of Oceanography, Report Series BI-R-75-16, 237 p.Google Scholar
Lentin, J. K., and Williams, G. L. 1977. Fossil dinoflagellates: index to genera and species, 1977 edition. Bedford Institute of Oceanography, Report Series B1-R-77-8, 209 p.Google Scholar
Lentin, J. K., and Williams, G. L. 1985. Fossil dinoflagellates: index to genera and species, 1985 edition. Canadian Technical Report of Hydrography and Ocean Sciences, 60, 451 p.Google Scholar
Lentin, J. K., and Williams, G. L. 1989. Fossil dinoflagellates: index to genera and species, 1989 edition. American Association of Stratigraphic Palynologists, Contributions Series, 20, 473 p.Google Scholar
Lentin, J. K., Williams, G. L., and Fensome, R. A. 1987. Sumatradinium: a stratigraphically useful dinoflagellate genus from the Neogene sediments of offshore eastern Canada. American Association of Stratigraphic Palynologists, 20th Annual Meeting, Halifax, NS Program and Abstracts: 104. [Reprinted in Palynology, 12:242–243 (1988).].Google Scholar
Lewis, J., Dodge, J. D., and Tett, P. 1984. Cyst-theca relationships in some Protoperidinium species (Peridiniales) from Scottish sea lochs. Journal of Micropalaeontology, 3:2534.Google Scholar
Liengjarern, M., Costa, L., and Downie, C. 1980. Dinoflagellate cysts from the Upper Eocene–Lower Oligocene of the Isle of Wight. Palaeontology, 23:475499.Google Scholar
Lindemann, E. 1928. Abteilung Peridineae (Dinoflagellatae), p. 3104. In Engler, A. and Prantl, K. (eds.), Die Natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen. Zweite stark vermehrte und verbesserte Auflage herausgegeben von A. Engler. 2 Band. Wilhelm Engelmann, Leipzig.Google Scholar
Locquin, M. V. 1980. Classification phonémique, calculable et descriptive des Mycota sporae dispersae. 105e Congr. nat. Soc. sav. (Caen, 1980), Sciences, 1:255270.Google Scholar
Locquin, M. V., Pons, D., and Salard-Cheboldaeff, M. 1981. Thyriothèces d'Ascomycètes fossiles. Cahiers de Micropaléontologie, 1–1981:109119.Google Scholar
Loeblich, A. R. Jr., and Loeblich, A. R. III. 1966. Index to the genera, subgenera, and sections of the Pyrrhophyta. Studies in Tropical Oceanography, Miami, 3:194.Google Scholar
Loeblich, A. R. III. 1970. The amphiesma or dinoflagellate cell covering, p. 867929. In Yochelson, E. L. (ed.), Proceedings of the North American Paleontological Convention, September, 1969.Google Scholar
Macko, S. 1957. Lower Miocene pollen flora from the valley of Klodnicka near Gliwice (Upper Silesia). Prace Wroclawskiego Tworzystwa Naukowego, Series B, 88:1313.Google Scholar
Mamczar, J. 1960. Wzorcowy profil srodkowego Miocenu Polski Srodkowej. Czesc I [Standard section of the Middle Miocene for Central Poland. Part I], p. 1368 and 193–222. In Doktorowicz-Hrebnicka, J. and Mamczar, J., Stratigraphy of the middle Miocene in Central Poland based on spore and pollen analysis of brown coal from the provinces of Poznan and Bydgoszcz. Instytut Geologiczny (Warszawa), Biuletyn, 157. [In Polish with extended English summary.].Google Scholar
Mantell, G. A. 1850. A Pictorial Atlas of Fossil Remains, consisting of coloured illustrations selected from Parkinson's ‘Organic remains of a former world,’ and Artis's ‘Antediluvian phytology.’ Henry G. Bohn, London, 207 p.Google Scholar
Manum, S. B. 1976. Dinocysts in Tertiary Norwegian-Greenland Sea sediments (Deep Sea Drilling Project Leg 38), with observations on palynomorphs and palynodebris in relation to environment, p. 897919. In Talwani, M., Udintsev, G., et al., Initial Reports of the Deep Sea Drilling Project, 38. U.S. Government Printing Office, Washington, D.C. Google Scholar
Manum, S. B., Boulter, M. C., Gunnarsdottir, H., Rangnes, K., and Scholze, A. 1989. Eocene to Miocene palynology of the Norwegian Sea (ODP Leg 104), p. 611662. In Eldholm, O., Thiede, J., Taylor, E., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 104. Ocean Drilling Program, College Station, Texas.Google Scholar
Manum, S. B., and Throndsen, T. 1986. Age of Tertiary formations on Spitsbergen. Polar Research, new series, 4:103131.Google Scholar
Mao, S., and Norris, G. 1988. Late Cretaceous–early Tertiary dinoflagellates and acritarchs from the Kashi Area, Tarim Basin, Xinjiang Province, China. Royal Ontario Museum, Life Sciences Contributions, 150:193.Google Scholar
Margerel, P. 1988. France, the Armorican Massif, benthic foraminifera, p. 173175. In Vinken, R. (ed.), The Northwest European Tertiary Basin, Results of the International Geological Correlation Programme Project No. 124. Geologisches Jahrbuch, Reihe A, Heft 100.Google Scholar
Martini, E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. Proceedings of the Second Planktonic Conference, Roma 1970, 2:739785.Google Scholar
Matsuoka, K. 1983. Late Cenozoic dinoflagellates and acritarchs in the Niigata District, central Japan. Palaeontographica, Abt. B, 187:89154.Google Scholar
Matsuoka, K. 1985a. Archeopyle structure in modern gymnodinialean dinoflagellate cysts. Review of Palaeobotany and Palynology, 44:217231.Google Scholar
Matsuoka, K. 1985b. Organic-walled dinoflagellate cysts from surface sediments of Nagasaki Bay and Senzaki Bay, West Japan. Bulletin of the Faculty of Liberal Arts, Nagasaki University, Natural Science, 25(2):21115.Google Scholar
Matsuoka, K. 1985c. Distribution of the dinoflagellate cyst in surface sediments of the Tsushima Warm Current. Daiyonki-kenkyuu (The Quaternary Research), 24(1):112.Google Scholar
Matsuoka, K. 1987. Organic-walled dinoflagellate cysts from surface sediments of Akkeshi Bay and Lake Saroma, North Japan. Bulletin of the Faculty of Liberal Arts, Nagasaki University, Natural Science, 28(1):35123.Google Scholar
Matsuoka, K. 1992. Species diversity of modern dinoflagellate cysts in surface sediments around the Japanese Islands, p. 3353. In Head, M. J. and Wrenn, J. H. (eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas. Google Scholar
Matsuoka, K., and Bujak, J. P. 1988. Cenozoic dinoflagellate cysts from the Navarin Basin, Norton Sound and St. George Basin, Bering Sea. Bulletin of the Faculty of Liberal Arts, Nagasaki University, Natural Science, 29(1):1147.Google Scholar
Matsuoka, K., Bujak., J. P. and Shimazaki, T. 1987. Late Cenozoic dinoflagellate cyst biostratigraphy from the west coast of northern Japan. Micropaleontology, 33:214229.Google Scholar
Matsuoka, K., and Fukuyo, Y. 1986. Cyst and motile morphology of colonial dinoflagellate Pheopolykrikos hartmannii (Zimmermann) comb. nov. Journal of Plankton Research, 8:811818.Google Scholar
Matsuoka, K., and Head, M. J. 1992. Taxonomic revision of the Neogene marine palynomorph species Cyclopsiella granosa (Matsuoka) and Batiacasphaera minuta (Matsuoka), and a new species of Pyxidinopsis Habib (Dinophyceae) from the Miocene of the Labrador Sea, p. 165180. In Head, M. J. and Wrenn, J. H. (eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
Matsuoka, K., Kobayashi, S., and Iizuka, S. 1982. Cysts of Protoperidinium divaricatum (Meunier) Parke et Dodge 1976 from surface sediments of Omura Bay, West Japan. Review of Palaeobotany and Palynology, 38:109118.Google Scholar
Matthews, W. H., and Rouse, G. E. 1984. The Gang Ranch-Big Bar area, south-central British Columbia: stratigraphy, geochronology, and palynology of the Tertiary beds and their relationship to the Fraser Fault. Canadian Journal of Earth Sciences, 21:11321144.Google Scholar
Maybury, C., and Whatley, R. C. 1980. The ostracod genus Leptocythere from the Pliocene deposits of St. Erth and North-West France. Revista Española de Micropaleontología, 12:435468.Google Scholar
Maybury, C., and Whatley, R. C. 1986. A high diversity ostracod fauna of late Pliocene age from St. Erth, south Cornwall. Proceedings of the Ussher Society, 6:312317.Google Scholar
Maybury, C., and Whatley, R. C. 1988. The evolution of high diversity in the ostracod communities of the upper Pliocene faunas of St. Erth (Cornwall, England) and North West France, p. 569596. In Hanai, T., Ikeya, N., and Ishizaki, K. (eds.), Evolutionary Biology on Ostracoda. Proceedings of the Ninth International Symposium on Ostracoda, Kodansha Ltd., Tokyo.Google Scholar
McMinn, A. 1989. Late Pleistocene dinoflagellate cysts from Botany Bay, New South Wales, Australia. Micropaleontology, 35:19.Google Scholar
McMinn, A. 1992a. Pliocene through Holocene dinoflagellate cyst biostratigraphy of the Gippsland Basin, Australia, p. 147161. In Head, M. J. and Wrenn, J. H. (eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
McMinn, A. 1992b. Neogene dinoflagellate distribution in the eastern Indian Ocean from Leg 123, Site 765, p. 429441. In Gradstein, F. M., Ludden, J. N., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 123. Ocean Drilling Program, College Station, Texas.Google Scholar
McNeil, D. H., Ioannides, N. S., and Dixon, J. 1982. Geology and biostratigraphy of the Dome Gulf et al. Ukalerk C-50 Well, Beaufort Sea. Geological Survey of Canada, Paper 80–82:117.Google Scholar
Meneghini, G. 1838. Cenni sulla organografia e fisiologia della Alghe. Negli Atti della Regia Accademia di Scienze, Lettere ed Arti di Padova, 64 p.Google Scholar
Menke, B. 1976. Pliozäne und ältestquartiäre Sporen und Pollenflora von Schleswig-Holstein. Geologische Jahrbuch A, 32:3197.Google Scholar
Méon, H. 1991. Études sporopolliniques à la limite Crétaceae-Tertiare: la coupe du Kef (Tunisie nord-occidentale); étude systématique, stratigraphie, paléogéographie et evolution climatique. Palaeontographica Abt. B, 223:107168.Google Scholar
Meunier, A. 1919. Microplankton de la mer Flamande. III. Les Péridiniens. Mémoires du Musee Royal d'Histoire Naturalle de Belgique, 8(1):1116.Google Scholar
Meyer, K. J. 1981. Zur stratigraphie des kontinentalen Pliozäns in NW-Deutschland mittels pollenanalytischer Untersuchungen. Newsletters in Stratigraphy, 10:119.Google Scholar
Miall, A. D. 1982. Tertiary sedimentation and tectonics in the Judge Daly Basin, northeastern Ellesmere Island, Arctic Canada. Geological Survey of Canada, Paper 80-30, 17 p.Google Scholar
Miall, A. D. 1992. Exxon global cycle chart: an event for every occasion? Geology, 20:787790.Google Scholar
Michoux, D. 1985. Palynostratigraphie de L'Éocene de Montfort-en-Chalosse (Landes, France). Revue de Micropaléontologie, 28:138152.Google Scholar
Mitchell, G. F. 1965. The St. Erth Beds—an alternative explanation. Proceedings of the Geologist's Association (London), 76:345366.Google Scholar
Mitchell, G. F., (with contributions by Catt, J. A., Weir, A. H., McMillan, N. F., Margerel, J. P., and Whatley)., R. C. 1973. The late Pliocene marine formation at St. Erth, Cornwall. Philosophical transactions of the Royal Society of London, B, 266(874):137. [As Mitchell et al., 1973 in text.].Google Scholar
Mohr, B. A. R. 1984. Die Mikroflora der Obermiozänen bis unterpliozänen deckschichten der Rheinischen Braunkohle. Palaeontographica, Abt. B, 191(1–4):29133.Google Scholar
Mohr, B. A. R. 1990. Eocene and Oligocene sporomorphs and dinoflagellate cysts from Leg 113 Drill Sites, Weddell Sea, Antarctica, p. 595612. In Barker, P. F., Kennett, J. P., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 113. Ocean Drilling Program, College Station, Texas.Google Scholar
Morzadec-Kerfourn, M.-T. 1977. La limite Pliocène-Pleistocène en Bretagne. Boreas, 6:275283.Google Scholar
Morzadec-Kerfourn, M.-T. 1979. Etude des organismes. D—Les kystes de Dinoflagellés. In La Mer Pélagienne. Etude sédimentologique et écologique du plateau tunisien et du Golfe de Gabès. Géologie Méditerranéenne, 6(1):221246.Google Scholar
Morzadec-Kerfourn, M.-T. 1982. Datation pollinique et conditions de sédimentation de l'argile Plio-Pleistocène de Lanrinou en Landerneau (Finistère, France). Bulletin de l'Association française pour l'étude du Quaternaire, 1982–4:179184.Google Scholar
Morzadec-Kerfourn, M.-T. 1988. Distribution des kystes de dinoflagellés dans les sédiments pléistocènes de la marge guinéenne de l'Afrique (EQUAMARGE 1, 1983). Palaeogeography, Palaeoclimatology, Palaeoecology, 65:201216.Google Scholar
Morzadec-Kerfourn, M.-T. 1992a. Upper Pleistocene and Holocene dinoflagellate cyst assemblages in marine environments of the Mediterranean Sea and the northwest Atlantic coast of France, p. 121132. In Head, M. J. and Wrenn, J. H. (eds), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
Morzadec-Kerfourn, M.-T. 1992b. Estuarine dinoflagellate cysts among oceanic assemblages of Pleistocene deep-sea sediments from the West African margin and their paleoenvironmental significance, p. 133146. In Head, M. J. and Wrenn, J. H. (eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
Mudie, P. J. 1987. Palynology and dinoflagellate biostratigraphy of Deep Sea Drilling Project Leg 94, Sites 607 and 611, North Atlantic Ocean, p. 785812. In Ruddiman, W. F., Kidd, R. B., Thomas, E., et al. Initial Reports of the Deep Sea Drilling Project, 94. U.S. Government Printing Office, Washington, D.C. Google Scholar
Mudie, P. J. 1989. Palynology and dinocyst biostratigraphy of the late Miocene to Pleistocene, Norwegian Sea ODP Leg 104, Sites 642 to 644, p. 587610. In Eldholm, O., Thiede, J., Taylor, E., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 104. Ocean Drilling Program, College Station, Texas. Google Scholar
Mudie, P. J. 1992. Circum-arctic Quaternary and Neogene marine palynofloras: paleoecology and statistical analysis, p. 347390. In Head, M. J. and Wrenn, J. H. (eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
Muir, M. D., and Sarjeant, W. A. S. 1971. An annotated bibliography of the Tasmanaceae and of related living forms (Algae: Prasinophyceae), p. 59117. In Jardiné, S. (ed.), Microfossils Organiques du Paleozoique, 3. Acritarches. Commission internationale de microflore du paléozoique, Editions due Centre national de la recherche scientifique, Paris.Google Scholar
Muller, J. 1981. Fossil pollen records of extant angiosperms. The Botanical Review, 47(1):1142.Google Scholar
Nagy, E. 1958. A mátraaljai felsö-pannóniai kori barnaköszén palinológiai vizsgálata.—Palynologische Untersuchung der am Fusse des Mátra-Gebirges gelagerten Oberpannonischen Braunkohle. A Magyar Áliami Földtani Intézet Évkönyve, 47(1):1353.Google Scholar
Nagy, E. 1965. The microplankton occurring in the Neogene of the Mecsek Mountains. Acta Botanica Académiae Scientiarium Hungaricae, 11:197216.Google Scholar
Nagy, E. 1966. Investigations into the Neogenic microplankton of Hungary. Palaeobotanist, Lucknow, 15:3846.Google Scholar
Nagy, E. 1967. Microplankton of the Neogene of Hungary. Review of Palaeobotany and Palynology, 2:343347.Google Scholar
Nagy, E. 1969. Palynological elaborations in the Miocene layers of the Mecsek Mountains. A Magyar Áliami Földtani Intézet Évkönyve, 52:233652.Google Scholar
Norris, G. 1969. Miospores from the Purbec beds and marine Upper Jurassic of southern England. Palaeontology, 12:574620.Google Scholar
Norris, G. 1970. Palynology of the Jurassic–Cretaceous Boundary in southern England. Geoscience and Man, 1:5765.Google Scholar
Norris, G. 1986. Systematic and stratigraphic palynology of Eocene to Pliocene strata in the Imperical Nuktak C-22 Well, Mackenzie Delta region, District of Mackenzie, N.W.T. Geological Survey of Canada Bulletin, 340:189.Google Scholar
Oloto, I. N. 1989. Maastrichtian dinoflagellate cyst assemblages from the Nkporo Shale on the Benin flank of the Niger Delta. Review of Palaeobotany and Palynology, 57(3/4):173186.Google Scholar
Pals, J. P., Van Geel, B., and Delfos, A. 1980. Paleoecological studies in the Klokkeweel bog near Hoogkarspel (prov. of Noord Holland). Review of Palaeobotany and Palynology, 30:371418.Google Scholar
Pampaloni, L. 1902. I resti organici nel disodile di Melilli in Sicilia. Palaeontographica Italica, 8:121130.Google Scholar
Pascher, A. 1914. Über Flagellaten und Algen. Berichte der Deutschen Botanischen Gesellshaft, 36:136160.Google Scholar
Piasecki, S. 1980. Dinoflagellate cyst stratigraphy of the Miocene Hodde and Gram Formations, Denmark. Geological Survey of Denmark Bulletin, 29:5376.Google Scholar
Piel, K. 1977. Miocene palynological assemblages from Central British Columbia, p. 91110. In Elsik, W. C. (ed.), Contributions of Stratigraphic Palynology (With emphasis on North America), Vol. 1, Cenozoic Palynology. American Association of Stratigraphic Palynologists Contribution Series, 5A.Google Scholar
Pirozynski, K. A. 1976. Fossil fungi. Annual Review of Phytopathology, 14:237246.Google Scholar
Pirozynski, K. A., Jarzen, D. M., Carter, A., and Day, R. 1988. Palynology and mycology of organic clay balls accompanying mastodon bones—New Brunswick, Canada. Grana, 27:123139.Google Scholar
Planderova, E. 1990. Miocene microflora of Slovak central Paratethys and its biostratigraphical significance. Dionyz Stúr Institute of Geology, 144 p.Google Scholar
Potonié, R. 1931a. Zur Mikroskopie der Braunkohlen. Tertiäre Blütenstaubformen. Braunkohle, 30(16):325333.Google Scholar
Potonié, R. 1931b. Pollenformen aus tertiären Braunkohlen. Preuβischen Geologischen Landesanstalt, Jahrbuch, 52:17.Google Scholar
Potonié, R. 1934. Zur Mikrobotanik des eocaenen Humodils des Geiseltals. Preuβischen Geologischen Landesanstalt, Institut für Paläeobotanik und Petrographie der Brennsteine, Arbeiten, 4:25117.Google Scholar
Potonié, R. 1951. Revision stratigraphisch wichtiger Sporomorphen des Mitteleuropäischen Tertiärs. Paläontographica, Abt. B, 91(5–6):131151.Google Scholar
Potonié, R. 1960. Synopsis der Gattungen der Sporae dispersae, III. Teil-Nachträge, Sporites, Fortsetzung Pollenites mit Generalregister zu Teil I–III. Geologischen Jahrbuch, Beihefte, 39:1189.Google Scholar
Potonié, R. 1966. Synopsis der Gattungen der Sporae dispersae. IV. Teil: Nachträge zu allen Gruppen (Turmae). Geologischen Jahrbuch, Beihefte, 72:1244.Google Scholar
Potonié, R., and Gelletich, J. 1933. Über Pteridophyten-Sporen einer eocänen Braunkohle aus Dorog in Ungarn. Sitzungsberichte der Gesellshaft Naturforschender zu Freunde Berlin (for 1932), 33:517528.Google Scholar
Potonié, R., and Kremp, G. O. W. 1954. Die Gattungen der palaeozoischen Sporae dispersae und ihre Stratigraphie. Geologischen Jahrbuch, Beihefte, 69:111194.Google Scholar
Potonié, R., and Venitz, H. 1934. Zur Mikrobotanik des miocänen Humodils der niederrheinischen Bucht. Preuβischen Geologischen Landesanstalt, Institut Palaeobotanik und Petrographie Brennsteine Art., 5:554.Google Scholar
Powell, A. J. 1986a. Latest Palaeogene and earliest Neogene dinoflagellate cysts from the Lemme section, northwest Italy, p. 83104. In Wrenn, J. H., Duffield, S. L., and Stein, J. A. (eds.), Papers from the First Symposium on Neogene Dinoflagellate Cyst Biostratigraphy. American Assocation of Stratigraphic Palynologists Contributions Series No. 17.Google Scholar
Powell, A. J. 1986b. A dinoflagellate cyst biozonation for the Late Oligocene to Middle Miocene succession of the Langhe region, Northwest Italy, p. 105127. In Wrenn, J. H., Duffield, S. L., and Stein, J. A. (eds.), Papers from the First Symposium on Neogene Dinoflagellate Cyst Biostratigraphy. American Association of Stratigraphic Palynologists Contributions Series No. 17.Google Scholar
Powell, A. J. 1986c. The stratigraphic distribution of Late Miocene dinoflagellate cysts from the Castellanian superstage stratotype, Northwest Italy, p. 129149. In Wrenn, J. H., Duffield, S. L., and Stein, J. A. (eds.), Papers from the First Symposium on Neogene Dinoflagellate Cyst Biostratigraphy. American Association of Stratigraphic Palynologists Contributions Series No. 17.Google Scholar
Powell, A. J. 1988. A preliminary investigation into the Neogene dinoflagellate cyst biostratigraphy of the British Southwestern Approaches. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 12:277311.Google Scholar
Punt, W., de Leeuw van Weenen, J. S., and van Oostrum, W. A. P. 1976. Primulaceae, p. 3170. In Punt, W. (ed.), The Northwest European Pollen Flora, I, Parts 1–7. Elsevier, Amsterdam.Google Scholar
Raatz, G. V. 1937. Mikrobotanisch-stratigraphische Untersuchung der Braunkohle des Muskauer Bogens. Preuβischen Geologischen Landesanstalt, Abhandlungen, Neue Folge, 183:148.Google Scholar
Raciborski, M. 1900. Parasitische Algen und Pilze Javas, 2. Staatsdruckerei, Batavia. [Reprinted: Bibliotheca mycologica, 37; J. Cramer, Lehre, 1973.].Google Scholar
Randhawa, M. S. 1959. Zygnemaceae. Indian Council of Agricultural Research, New Delhi, 478 p.Google Scholar
Reid, C., and Flett, J. S. 1907. The geology of the Land's End district. Memoirs of the Geological Survey of England and Wales, Sheets 351 and 358.Google Scholar
Reid, P. C. 1972. The distribution of dinoflagellate cysts, acritarchs and pollen in coastal sediments from the British Isles. Unpubl. Ph.D. dissertation, University of Sheffield, 2 volumes, 277 p. [Not seen.].Google Scholar
Reid, P. C. 1978. Peridiniacean and glendodiniacean dinoflagellate cysts from the British Isles. Nova Hedwigia, 29(3–4):429463. [Stated as reprinted from Nova Hedwigia 29, 18th Nov. 1977 but this claim is apparently unsubstantiated.].Google Scholar
Riediger, C. L., Bustin, R. M., and Rouse, G. E. 1984. New evidence for the chronology of the Eurekan Orogeny from south-central Ellesmere Island. Canadian Journal of Earth Sciences, 21:12861295.Google Scholar
Rosendahl, C. O. 1943. Some fossil fungi from Minnesota. Bulletin of the Torrey Botanical Club, 70:126138.Google Scholar
Rossignol, M. 1962. Analyse pollinique de sédiments marins Quaternaires en Israël. II. Sédiments Pléistocènes. Pollen et Spores, 4:121148.Google Scholar
Rossignol, M. 1964. Hystrichosphères du Quaternaire en Méditerranée orientale, dans les sédiments Pléistocènes et les boues marines actuelles. Revue de Micropaléontologie, 7:8399.Google Scholar
Rouse, G. E. 1962. Plant microfossils from the Burrard Formation of western British Columbia. Micropaleontology, 8:187218.Google Scholar
Ruddiman, W. F., McIntyre, A., and Raymo, M. 1987. Paleoenvironmental results from North Atlantic Sites 607 and 609, p. 855878. In Ruddiman, W. F., Kidd, R. B., Thomas, E., et al., Initial Reports of the Deep Sea Drilling Project, 94 (Part 2). U.S. Government Printing Office, Washington, D.C. Google Scholar
Rusbült, J., and Strauβ, C. 1992. Mikrofossilien des Unter- und Mittelmiozän in der Braunkohlenbohrung Lübtheen 46/84 (Südwest-Mecklenburg). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1992(3):150170.Google Scholar
Sah, S. C. D. 1967. Palynology of an Upper Neogene profile from Rusizi Valley (Burundi). Annales due Musée royal de l'Afrique centrale-Série in-8°-Sciences géologiques, 57:1173.Google Scholar
Sarjeant, W. A. S. 1970. The genus Spiniferites Mantell, 1850 (Dinophyceae). Grana, 10:7478.Google Scholar
Sarjeant, W. A. S. 1984. Restudy of some dinoflagellate cysts from the Oligocene and Miocene of Germany. Journal of Micropalaeontology, 3:7394.Google Scholar
Sarjeant, W. A. S. 1985. A restudy of some dinoflagellate cyst holotypes in the University of Kiel Collections. VI. Late Cretaceous dinoflagellate cysts and other palynomorphs in the O. Wetzel Collection. Meyniana, 37:129185.Google Scholar
Sarjeant, W. A. S., and Strachan, I. 1968. Freshwater acritarchs in Pleistocene peats from Staffordshire, England. Grana Palynologica, 8:204209.Google Scholar
Sarkar, S., and Singh, H. P. 1988. Palynological investigation of the Subathu Formation (Eocene) in the Banethi-Bagthan area of Himachal Pradesh, India. Palaeontographica, Abt. B, 209(1–3):29108.Google Scholar
Saxena, R. K., and Sarkar, S. 1986. Morphological study of Frasnacritetrus Taugourdeau emend, from Tertiary sediments of Himachal Pradesh, India. Review of Palaeobotany and Palynology, 46:209225.Google Scholar
Saxena, R. K., Singh, H. P., and Rao, M. R. 1987. Palynology of the Tatrot–Pinjor sequence exposed between Masol and Kiratpur, in Ambala district, Haryana. Geophytology, 17:270284.Google Scholar
Scheuer, Ch. 1991. Massarina tetraploa sp. nov., the teleomorph of Tetraploa aristata . Mycological Research, 95:126128.Google Scholar
Schrank, E. 1988. Effects of chemical processing on the preservation of peridinioid dinoflagellates: a case from the Late Cretaceous of NE Africa. Review of Palaeobotany and Palynology, 56:123140.Google Scholar
Schweitzer, H.-J. 1980. Environment and climate in the early Tertiary of Spitsbergen. Palaeogeography, Palaeoclimatology, Palaeoecology, 30:297311.Google Scholar
Selling, O. H. 1946. Studies in Hawaiian pollen statistics. Part I. The spores of the Hawaiian pteridophytes. Bernice P. Bishop Museum Special Publication, 37:187.Google Scholar
Shackleton, N. J., and Hall, M. A. 1984. Oxygen and carbon isotope stratigraphy of Deep Sea Drilling Project Hole 552A: Plio-Pleistocene glacial history, p. 599609. In Roberts, D. G., Schnitker, D., et al. Initial Reports of the Deep Sea Drilling Project, 81. U.S. Government Printing Office, Washington, D.C. Google Scholar
Shackleton, N. J., West, R. G., and Bowen, D. Q. (eds.). 1988. The past three million years: evolution of climatic variability in the North Atlantic region. Philosophical Transactions of the Royal Society of London, B, Biological Sciences, 318(1191):409690.Google Scholar
Shackleton, N. J., Backman, J., Zimmerman, H., et al. 1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature, 307:620623.Google Scholar
Sharma, C. 1974. Some fungal spores from Quaternary deposits of Malvan, Gujarat. The Palaeobotanist, 23:7981.Google Scholar
Sherwood-Pike, M. A. 1988. Freshwater fungi: fossil record and paleoecological potential. Palaeogeography, Palaeoclimatology, Palaeoecology, 62:271285.Google Scholar
Simons, J. 1987. Spirogyra species and accompanying algae from dune waters in The Netherlands. Acta Botanica Neerlandica, 36:1331.Google Scholar
Singh, H. P., and Sarkar, S. 1984. A Kasauli palynoflora from Banethi area of Himachal Pradesh, India. Geophytology, 14:4054.Google Scholar
Singh, H. P., and Saxena, R. K. 1981. Palynology of the upper Siwalik sediments in Una district Himachal Pradesh. Geophytology, 11:173181.Google Scholar
Singh, H. P., Saxena, R. K., and Rao, M. R. 1986. Palynology of the Barail (Oligocene) and Surma (Lower Miocene) sediments exposed along Sonapur–Badarpur Road Section, Jainta Hills (Meghalaya) and Cachar (Assam). Part II. Fungal remains. The Palaeobotanist, 35:93105.Google Scholar
Skarby, A. 1978. Optical properties of fossil Schizaea spores from the Upper Cretaceous of Scania. Grana, 17:111123.Google Scholar
Smith, W. G. 1877. A fossil Peronospora. The Gardner's Chronicle, 8 (Oct. 20, 1877):499500.Google Scholar
Zhi-Chen, Song, Xue-Ting, Guan, Zeng-Rui, Li, Ya-Hui, Zheng, Wei-Ming, Wang, and Zhong-Heng, Hu. 1985. A Research on Cenozoic Palynology of the Longjing Structural Area in the Shelf Basin of the East China Sea (Donghai) Region. Anhui Science and Technology Publishing House, Hefei, 209 p.Google Scholar
Sontag, E. 1966. Microbotanische (palynologische) Untersuchungen am 2. Niederlausitzer Flözhorizont. Geologie Beiheft, 54:1141.Google Scholar
Srivastava, S. K. 1984a. Palynology of the Monterey Formation (Miocene) phosphatic facies at Lions Head, Santa Maria area, California. Palynology, 8:3349.Google Scholar
Srivastava, S. K. 1984b. Genus Sigmopollis from the Maastrichtian Scollard Formation, Alberta (Canada), and its algal affinity. Pollen et Spores, 26(3–4):519530.Google Scholar
Stancliffe, R. P. W. 1989. Microforaminiferal linings: their classification, biostratigraphy and paleoecology, with special reference to specimens from British Oxfordian sediments. Micropaleontology, 35:337352.Google Scholar
Stancliffe, R. P. W., and Matsuoka, K. 1991a. Marine palynomorphs found in Holocene sediments off the coast of northwestern Kyushu, Japan. Bulletin of the Faculty of Liberal Arts, Nagasaki University, Natural Science, 31:661681.Google Scholar
Stancliffe, R. P. W., and Matsuoka, K. 1991b. Note on the preparation of small calcareous tests and shells using hydrofluoric acid. Micropaleontology, 37:419421.Google Scholar
Staplin, F. L. (ed.). 1976. Tertiary biostratigraphy, Mackenzie Delta Region, Canada. Bulletin of Canadian Petroleum Geology, 24:117136.Google Scholar
Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores, 13:615621.Google Scholar
Stover, L. E., and Evitt, W. R. 1978. Analyses of pre-Pleistocene organic-walled dinoflagellates. Stanford University Publications, Geological Sciences, 15:1300.Google Scholar
Suc, J.-P., and Zagwijn, W. H. 1983. Plio-Pleistocene correlations between the northwestern Mediterranean region and northwestern Europe according to recent biostratigraphic and palaeoclimatic data. Boreas, 12:153166.Google Scholar
Taugourdeau, P. 1968. Sur un curieux microfossile incertae sedis du Frasnien du Boulonnais Frasnacritetrus nov. gen. (Acritarche). Cahiers de Micropaléontologie, série 1, 10 (Arch. orig. Centre Doc. CNRS no. 452):14.Google Scholar
Taylor, F. J. R. 1980. On dinoflagellate evolution. BioSystems, 13:65108.Google Scholar
Thiergart, F. 1938. Die Pollenflora der Niederlausitzer Braunkohle, besonders im Profil der Grube Marga bei Senftenberg. Preuβischen Geologischen Landesanstalt, Jahrbuch, 58:282351.Google Scholar
Thomson, P. W., and Pflug, H. 1953. Pollen und Sporen des mitteleuropäischen Tertiärs. Palaeontographica, Abt. B, 94(1–4):1138.Google Scholar
Transeau, E. N. 1934. The genera of the Zygnemataceae. Transactions of the American Microscopical Society, 53:201207.Google Scholar
Transeau, E. N. 1951. The Zygnemataceae. Graduate School Monographs. Contributions in Botany, No. 1. Ohio State University Press, Columbus, 327 p.Google Scholar
Traverse, A. 1988. Paleopalynology. Unwin Hyman, Boston, 600 p.Google Scholar
Truswell, E. M., Sluiter, I. R., and Harris, W. K. 1985. Palynology of the Oligocene–Miocene sequence in the Oakvale-1 corehole, western Murray Basin, South Australia. BMR Journal of Australian Geology and Geophysics, 9:267295.Google Scholar
Turner, S. C., and Blackmore, S. 1984. Plumbaginaceae, p. 133154. In Punt, W. and Clarke, G. C. S. (eds.), The Northwest European Pollen Flora, IV, Parts 29–37. Elsevier, Amsterdam. [Reprinted from Review of Palaeobotany and Palynology, Volume 42.].Google Scholar
Turon, J.-L. 1984. Le palynoplancton dans l'environment actuel de l'Atlantique nord oriental. Evolution climatique et hydrologique depuis le dernier maximum glaciaire. Mémoires de l'Institut de géologie du bassin d'Aquitaine, 17:1313.Google Scholar
Turon, J.-L. and Londeix, L. 1988. Les assemblages de kystes de dinoflagellés en Mediterranée occidentale (Mer d'Alboran). Mise en évidencede l'évolution des paléoenvironnements depuis le dernier maximum glaciaire. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 12(1):313344.Google Scholar
van Beverwijk, A. L. 1954. Three new fungi: Helicoon pleuriseptatum n. sp., Papulaspora pulmonaria n. sp., and Tricellula inaequalis n. gen., n. sp. Antonie van Leeuwenhoek. Journal of Microbiology and Serology, 20:116.Google Scholar
van der Hammen, T., Werner, J. H., and Van der Dommelen, H. 1973. Palynological record of the upheaval of the Northern Andes: a study of the Pliocene and lower Quaternary of the Colombian Eastern Cordillera and the early evolution of its High-Andean biota. Review of Palaeobotany and Palynology, 16(1/2):1122.Google Scholar
van der Hammen, T., Wumstra, T. A., and Zagwijn, W. H. 1971. The floral record of the late Cenozoic of Europe, p. 391424. In Turekan, K. K. (ed.), The Late Cenozoic Glacial Ages. Yale University Press, New Haven and London.Google Scholar
Van Geel, B. 1978. A palaeoecological study of Holocene peat bog sections in Germany and The Netherlands. Review of Palaeobotany and Palynology, 25:1120.Google Scholar
Van Geel, B. 1979. Preliminary report on the history of Zygnemataceae and the use of their spores as ecological markers. Fourth International Palynological Conference, Lucknow (1976–77), 1:467469.Google Scholar
Van Geel, B. 1986. Application of fungal and algal remains and other microfossils in palynological analyses, p. 497505. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley and Sons Ltd., Chichester, United Kingdom.Google Scholar
Van Geel, B., Bohncke, S. J. P., and Dee, H. 1981. A palaeoecological study of an upper Lateglacial and Holocene sequence from ‘De Borchert,’ The Netherlands. Review of Palaeobotany and Palynology, 31:367448.Google Scholar
Van Geel, B., Coope, G. R., and van der Hammen, T. 1989. Palaeoecology and stratigraphy of the Lateglacial type section at Usselo (The Netherlands). Review of Palaeobotany and Palynology, 60:25129.Google Scholar
Van Geel, B., Hallewas, D. P., and Pals, J. P. 1983. A late Holocene deposit under the Westfriese Zeedijk near Enkhuizen (prov. of Noord-Holland, The Netherlands): palaeoecological and archaeological aspects. Review of Palaeobotany and Palynology, 38:269335.Google Scholar
Van Geel, B. and van der Hammen, T. 1973. Upper Quaternary vegetational and climatic sequence of the Fuquene area (Eastern Cordillera, Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology, 14:992.Google Scholar
Van Geel, B. and van der Hammen, T. 1978. Zygnemataceae in Quaternary Colombian sediments. Review of Palaeobotany and Palynology, 25:377392.Google Scholar
Vinken, R. (ed.). 1988. The Northwest European Tertiary Basin. Results of the International Geological Correlation Programme Project No. 124. Geologisches Jahrbuch, A 100:7508.Google Scholar
Walker, J. 1972. Type studies on Gaeumannomyces graminis and related fungi. Transactions of the British Mycological Society, 58:427457.Google Scholar
Walker, J. 1980. Gaeumannomyces, Linocarpon, Ophiobolus and several other genera of scolecospored ascomycetes and Phialophora conidial states, with a note on hyphopodia. Mycotaxon, 11(1):1129.Google Scholar
Wall, David. 1965. Modern hystrichospheres and dinoflagellate cysts from the Woods Hole region. Grana Palynologica, 6:297314.Google Scholar
Wall, David. 1967. Fossil microplankton in deep-sea cores from the Caribbean Sea. Palaeontology, 10:95123.Google Scholar
Wall, David, and Dale, B. 1968a. Early Pleistocene dinoflagellates from The Royal Society borehole at Ludham, Norfolk. New Phytologist, 67:315326.Google Scholar
Wall, David, and Dale, B. 1968b. Modern dinoflagellate cysts and evolution of the Peridiniales. Micropaleontology, 14:265304.Google Scholar
Wall, David, Dale, B., Lohman, G. P., and Smith, W. K. 1977. The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and adjacent seas. Marine Micropaleontology, 2:121200.CrossRefGoogle Scholar
Walsh, P. T., Atkinson, K., Boulter, M. C., and Shakesby, R. A. 1987. The Oligocene and Miocene outliers of west Cornwall and their bearing on the geomorphological evolution of Oldland Britain. Philosophical Transactions of the Royal Society of London, A, Mathematical and Physical Sciences, 323 (1571):211245.Google Scholar
Walter, R. C., Manega, P. C., and Hay, R. L. 1992. Tephrochronology of Bed I, Olduvai Gorge: an application of laser-fusion 40 Ar/39Ar dating to calibrating biological and climatic change. Quaternary International, 13/14:3746.Google Scholar
Warner, B. G. 1990. Testate amoebae (Protozoa), p. 6574. In Warner, B. G. (ed.), Methods in Quaternary Ecology. Geoscience Canada Reprint Series 5, Geological Association of Canada, St. John's, Newfoundland.Google Scholar
Weaver, P. E. E., and Clement, B. M. 1986. Magnetobiostratigraphy of planktonic foraminiferal datums: DSDP Leg 94, p. 815829. In Ruddiman, W. F., Kidd, R. B., et al., Initial Reports of the Deep Sea Drilling Project, 94. U.S. Government Printing Office, Washington, D.C. Google Scholar
West, R. G. 1980. Pleistocene forest history in East Anglia. New Phytologist, 85:571622.Google Scholar
West, R. G. 1991. Pleistocene Palaeoecology of Central Norfolk. A Study of Environments Through Time. Cambridge University Press, Cambridge, United Kingdom, 110 p.Google Scholar
Wetzel, O. 1933. Die in organischer Substanz erhaltenen Mikrofossilien des baltischen Kreide-Feuersteins mit einem sediment-petrographischen und stratigraphischen Anhang. Palaeontographica, Abt. A, 78:1110.Google Scholar
Weyland, H., and Pflug, H. D. 1957. Die Pflanzenreste der pliozänen Braunkohlevon Ptolemais in Nordgriechenland. I. Palaeontographica, Abt. B, 102(4–6):96102.Google Scholar
Whatley, R. C., and Maybury, C. 1981. The evolution and distribution of the ostracod genus Leptocythere Sars, 1925 from the Miocene to Recent in Europe. Revista Española de Micropaleontología, 13:2542.Google Scholar
Whatley, R. C., and Maybury, C. 1983. New British Pliocene species of the Australian Recent genus Austroparadoxostoma Hartmann, 1979 (Ostracoda). Journal of Micropalaeontology, 2:711.Google Scholar
Whitley, N. 1882. The evidence of glacial action in Cornwall and Devon. Transactions of the Royal Geological Society of Cornwall, 10:132141.Google Scholar
Whitney, B. L. 1984. Dinoflagellate biostratigraphy of the Maastrichtian–Danian section in southern Maryland, p. 123136. In Frederiksen, N. O. and Krafft, K. (eds.), Cretaceous and Tertiary Stratigraphy, Paleontology, and Structure, Southwestern Maryland and Northeastern Virginia. American Association of Stratigraphic Palynologists Field Trip Volume and Guidebook, Dallas, Texas.Google Scholar
Williams, G. L. 1975. Dinoflagellate and spore stratigraphy of the Mesozoic–Cenozoic, offshore eastern Canada. Geological Survey of Canada, Paper 74–30, 2:107161.Google Scholar
Williams, G. L. 1978. Palynological biostratigraphy, Deep Sea Drilling Project, Site 367 and 370, p. 783815. In Lancelot, Y., Seibold, E., et al., Initial Reports of the Deep Sea Drilling Project, 41, Supplement to Volumes 38–41. U.S. Government Printing Office, Washington, D.C. Google Scholar
Williams, G. L., and Brideaux, W. W. 1975. Palynologic analyses of upper Mesozoic and Cenozoic rocks of the Grand Banks, Atlantic continental margin. Geological Survey of Canada Bulletin, 236:1163.Google Scholar
Williams, G. L., and Bujak, J. P. 1977. Cenozoic palynostratigraphy of offshore eastern Canada. American Association of Stratigraphic Palynologists, Contribution Series, 5A:1447.Google Scholar
Williams, G. L., and Bujak, J. P. 1985. Mesozoic and Cenozoic dinoflagellates, p. 847864. In Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K. (eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
Willoughby, L. G., and Townley, P. J. 1961. Two new saprophytic chytrids from the Lake District. Transactions of the British Mycological Society, 44:177184.CrossRefGoogle Scholar
Wingate, F. H. 1983. Palynology and age of the Elko Formation (Eocene) near Elko, Nevada. Palynology, 7:93132.Google Scholar
Wittrock, V. B. 1872. Om Gotlands och Ölands sötvattensalger. Bihang Kongliga Svenska Vetenskaps-Akademiens Handlingar, 1:172.Google Scholar
Wodehouse, R. P. 1933. Tertiary pollen. II, The oil shales of the Eocene Green River formation. Bulletin of the Torrey Botanical Club, 60:479524.Google Scholar
Wrenn, J. H., and Kokinos, J. P. 1986. Preliminary comments on Miocene through Pleistocene dinoflagellate cysts from De Soto Canyon, Gulf of Mexico, p. 169225. In Wrenn, J. H., Duffield, S. L., and Stein, J. A. (eds.), Papers from the First Symposium on Neogene Dinoflagellate Cyst Biostratigraphy. American Association of Stratigraphic Palynologists Contributions Series No. 17.Google Scholar
Wrenn, J. H., and Hart, G. F. 1988. Paleogene dinoflagellate cyst biostratigraphy of Seymour Island, Antarctica. Geological Society of America, Memoir 169:321447.Google Scholar
Zagwijn, W. H. 1957. Vegetation, climate and time-correlations in the early Pleistocene of Europe. Geologie en Mijnbouw, New Series 19, 233 p.Google Scholar
Zagwijn, W. H. 1960. Aspects of the Pliocene and early Pleistocene vegetation in the Netherlands. Mededelingen van de Geologische Stichting, Serie C-III-1, 5:178.Google Scholar
Zagwijn, W. H. 1975. Correlaties van Laat-Tertiare en Kwataire afzettingen in de gebieden rond de Nordzee, p. 122123. In Zagwijn, W. H. and van Staalduinen, C. J. (eds.), Toelichting bij geologische overzichtskaarten van Nederland Rijks Geologische Dienst, Haarlem, The Netherlands.Google Scholar
Zagwijn, W. H. 1985. An outline of the Quaternary stratigraphy of the Netherlands. Geologie en Mijnbouw, 64:1724.Google Scholar
Zagwijn, W. H. 1992. The beginning of the ice age in Europe and its major subdivisions. Quaternary Science Reviews, 11:583591.Google Scholar
Zagwijn, W. H., and Hager, H. 1987. Correlations of continental and marine Neogene deposits in the South-Eastern Netherlands and the lower Rhine district. Mededelingen van de Werkgroep voor Tertiaire en Kwartaire Geologie, 24(1–2):5978.Google Scholar
Zalasiewicz, J. A., Mathers, S. J., Hughes, M. J., Gibbard, P. L., Peglar, S. M., Harland, R., Nicholson, R. A., Boulton, G. S., Cambridge, P., and Wealthall, G. P. 1988. Stratigraphy and palaeoenvironments of the Red Crag and Norwich Crag formations between Aldeburgh and Sizewell, Suffolk, England. Philosophical Transactions of the Royal Society, London, B, 322:221272.Google Scholar
Zuderveld, J. D. A., Hilgen, F. J., Langereis, C. G., Verhallen, P. J. J. M., and Zachariassse, W. J. 1991. Integrated magnetostratigraphy and biostratigraphy of the upper Pliocene–lower Pleistocene from the Monte Singa and Crotone areas in Calabria, Italy. Earth and Planetary Science Letters, 107:697714.CrossRefGoogle Scholar