Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T06:36:00.699Z Has data issue: false hasContentIssue false

Deciduous Premolars of Paleocene Litopterns of São José De Itaboraí Basin, Rio De Janeiro, Brasil

Published online by Cambridge University Press:  20 May 2016

Lílian Paglarelli Bergqvist*
Affiliation:
Avenida Athos da Silveira Ramos, 274, bloco G, Centro de Ciências Matemáticas e da Natureza, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil, 21941-916,

Abstract

The order Litopterna is represented in the São José de Itaboraí basin by four species belonging to the families Protolipternidae (Protolipterna ellipsodontoides, Miguelsoria parayirunhor and Asmithwoodwardia scotti) and Proterotheriidae (Paranisolambda prodromus). Only the deciduous teeth of P. prodromus are known so far. Isolated milk premolars are described for P. ellipsodontoides and M. parayirunhor. The known specimens assigned to P. prodromus are redescribed. No milk teeth are known for A. scotti. The upper and lower milk teeth of Protolipternidae, especially dP3, are more molarized than their successors, resembling, in several features later Proterotheriidae. They provide new support for the placement of this family within the order Litopterna. The analysis of the wear level of dp2-4/dP2-4 and X-ray images of the lower jaw of P. prodromus suggests that the second teeth of the premolar series, in upper and lower jaw, are retained milk premolars. Some information on tooth replacement pattern of P. ellipsodontoides and P. prodromus are also provided.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ameghino, F. 1885. Nuevos restos de mamíferos fósiles oligocenos recogidos por el profesor Pedro Scalabrini y pertenecientes al Muso provincial de la cuidad del Paraná. Boletín de la Academia Nacional de Ciencias de Córdoba, 8:5205Google Scholar
Ameghino, F. 1887. Enumeración sistemática de las especies de mamíferos fósiles coleccionados por C. Ameghino en los terrenos eocenos de la Patagonia austral. Boletín del Museo de La Plata, I:126.Google Scholar
Ameghino, F. 1889. Contribution al conocimiento de los mamíferos fósiles de la República Argentina. Acta de la Academia Nacional de Ciencias de Córdoba, Number 6, 1027.Google Scholar
Ameghino, F. 1901. Notices préliminaries sur dês ongulés noveaux des terrains crétacés de Patagonie. Boletin de la Academia Nacional de Ciencias de Córdoba, 16:350426.Google Scholar
Asher, R. J., Bennett, N., and Lehmann, T. 2009. The new framework for understanding placental mammal evolution. Bio Essays, 31:853864.Google Scholar
Asher, R. J. and Lehmann, T. 2008. Dental eruption in afrotherian mammals. BMC Biology, 6:14.Google Scholar
Bergqvist, L. P. 1996. Reassociação do pós-crânio às espécies de ungulados da bacia de S. J. de Itaboraí (Paleoceno), Estado do Rio de Janeiro, e filogenia dos “Condylarthra” e ungulados sul-americanos com base no pós-crânio. Unpublished Ph.D. dissertation, Universidade Federal do Rio Grande do Sul at Porto Alegre, 407p.Google Scholar
Bergqvist, L. P. 2005. Postcranial synapomorphies supporting the monophyly of the Order Litopterna. Abstracts of the 2nd Congresso Latino-Americano de Paleontologia de Vertebrados, Rio de Janeiro, 1:4849.Google Scholar
Bergqvist, L. P. and Moreira, A. L. 2002. Possíveis dentes decíduos de Tetragonostylops apthomasi, procedentes da bacia de S.J. Itaboraí, RJ. Arquivos do Museu Nacional, 60(3):189194.Google Scholar
Bergqvist, L. P., Mendes, J. C., Teixeira, M. S., and Rocha, Y. S. 2009. Análise tafonômica de ossos de tetrápodes da bacia de São José de Itaboraí, Paleoceno superior, estado do Rio de Janeiro, Brasil: Primeiros resultados. Resúmens de la XXIV Jornadas Argentinas de paleontologia de Vertebrados, San Rafael:15.Google Scholar
Cifelli, R. L. 1983a. Eutherian tarsals from the late Paleocene of Brazil. American Museum Novitates, Number 2761, 31p.Google Scholar
Cifelli, R. L. 1983b. Origin and affinities of the South American Condylarthra and Early Tertiary Litopterna (Mammalia). American Museum Novitates, Number 2772, 49p.Google Scholar
Cope, E. D. 1881. On some Mammalia of the lowest Eocne beds of New Mexico. Paleontological Bulletin, 33:484495.Google Scholar
Fortelius, M. and Solounias, N. 2000. Functional characterization of ungulate molars using the abrasion-attrition wear gradient: A new method for reconstructing paleodiets. American Museum Novitates, 3301:136.Google Scholar
Gelfo, J. N. 2004. A new South American mioclaenid (Mammalia: Ungulatomorpha) from the Tertiary of Patagonia, Argentina. Ameghiniana, 41(3):475484.Google Scholar
Gelfo, J. N., Goin, F. J., Woodburne, M. O., and de Muizon, C. 2009. Biochronological relationships of the earliest South American Paleogene mammalian faunas. Paleontology, 52(1):251269.Google Scholar
Grine, F. E. 2005. Enamel thickness of deciduous and permanent molars in modern Homo sapiens. American Journal of Physical Anthropology, 126:1231.Google Scholar
Holroyd, P. 2008. New data on dental eruption patterns in condylarths and afrotheres. Journal of Vertebrate Paleontology, 28(suppl. 3):93A.Google Scholar
Koegniswald, G. H. R. 1967. Evolutionary trends in the deciduous molars of the Hominoidea. Journal of Dental Research, 46(05) part 1:779786.Google Scholar
Leche, W. 1907. Zur Entwicklungsgeschichte des Zahnsystems der Säugetiere, zugleich ein Beitrag zur Stammesgeschichte dieser Tiergruppe, Teil 2. Zoologica, 49:1157.Google Scholar
Luckett, W. P. and Maier, W. 1982. Development of deciduous and permanent dentition in Tarsius and its phylogenetic significance. Folia Primatologica, 37:136.Google Scholar
Matthew, W. D. 1937. Paleocene faunas of the San Juan Basin, New Mexico. Transactions of the American Philosphical Society, 30:1374.Google Scholar
Matthew, W. D. and Granger, W. 1925. The smaller perissodactyls of the Irdin Manha Formation, Eocene of Mongolia. American Museum Novitates, Number 199, 9 p.Google Scholar
Medeiros, R. A. and Bergqvist, L. P. 1999. Paleocene of the São José de Itaboraí basin, Rio de Janeiro, Brazil: lithostratigraphy and biostratigraphy. Acta Geológica Leopoldensia, 22(48):322.Google Scholar
Muizon, C. and Cifelli, R. L. 2000. The “condylarths” (archaic Ungulata, Mammalia) from the early Paleocene of Tiupampa (Bolivia): implications on the origin of the South American ungulates. Geodiversitas, 22(1):47150.Google Scholar
Paula-Couto, C. 1952a. Fossil mammals from the beginning of the Cenozoic in Brazil. Condylarthra, Litopterna, Xenungulata and Astrapotheria. Bulletin of the American Museum of Natural History, 99:355394.Google Scholar
Paula-Couto, C. 1952b. Fossil mammals from the beginning of the Cenozoic in Brazil. Notoungulata. American Museum Novitates, Number 1568, 16 p.Google Scholar
Paula-Couto, C. 1963. Um Trigonostylopidae do Paleonceno do Brasil. Anais da Academia Brasileira de Ciências, 35(3):339351.Google Scholar
Paula-Couto, C. 1970. Novo notoungulado no Riochiquense de Itaboraí. Iheringia, 3:7786.Google Scholar
Price, L. I. and Paula-Couto, C. 1950. Vertebrados fósseis do Eoceno na bacia Calcárea de Itaboraí. Annals 2nd Congresso Panamericano de Engenharia de Minas e Geologia, Petrópolis, 1:149173.Google Scholar
Scott, W. B. 1910. Litopterna of the Santa Cruz beds. The University of Princeton, Reports of the Princeton University Expedition to Patagonia, 1896-1899, v. 7, part 1, 156 p.Google Scholar
Shigehara, N. 1980. Epiphyseal union, tooth eruption, and sexual maturation in the common tree shrew, with reference to its systematic problem. Primates, 21:119.Google Scholar
Simpson, G. G. 1948. The beginning of the age of mammals in South America. Part I. Bulletin of the American Museum of Natural History, 91:1232.Google Scholar
Simpson, G. G. 1951. American cretaceous insetivours. American Museum Novitates, 1541:19.Google Scholar
Simpson, G. G. 1967. The beginning of the age of mammals in South America. Part 2. Bulletin of the American Museum of Natural History, 137:1259.Google Scholar
Smith, B. H. 2000. “Schultz's Rule” and the evolution of tooth replacement patterns in primates and ungulates, p. 212227. In: Teaford, M. F., Smith, M. M. and Ferguson, M. W. J. (eds.), Development, Function and Evolution of Teeth. Cambridge University Press, Cambridge.Google Scholar
Soilbelzon, L. and Carlini, A. 2004. Deciduous teeth morphology of some tremarctines (Ursidae, Tremarctinae). Descriptions, comparisons and possible phylogenetic implicatios. Ameghiniana, 41(2):217224.Google Scholar
Soria, M. F. 2001. Los Proterotheriidae (Litopterna, Mammalia), sistemática, origen y filogenia. Monografias del Museo Argentina de Ciencias Naturales, Number 1, 167 p.Google Scholar
Tuen, A. A., Rahman, M. A., and Abdullah, M. T.M. T., 1999. Age classification of bearded pigs (Sus barbatus) from Bario, Kelabit Highlands. ASEAN Review of Biodiversity and Environmental Conservation, September-October:15.Google Scholar
van Nievelt, A. F. H. and Smith, K. K. 2005. To replace or not to replace: The significance of reduced functional tooth replacement in marsupial and placental mammals. Paleobiology, 31(2):324346.Google Scholar
West, R. M. 1971. Decidiuos dentition of the Early Tertiary Phenacodontidae (Condylarthra, Mammalia). American Museum Novitates, Number 2461, 37 p.Google Scholar
West, R. M. 1972. Upper deciduous dentition of the Oligocene Insectivore Leptictis (=Ictops) acutidens. Annals of Carnegie Museum, 44(3):2532.Google Scholar
Ziegler, A.C. 1971. A theory of the evolution of therian dental formulas and replacement patterns. The Quarterly Review of Biology, 46:226249.Google Scholar