Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T23:23:17.708Z Has data issue: false hasContentIssue false

Decapod and stomatopod crustaceans from mass mortality Lagerstatten: Turonian (Cretaceous) of Colombia

Published online by Cambridge University Press:  20 May 2016

Rodney M. Feldmann
Affiliation:
1Department of Geology, Kent State University, Kent, OH 44242
Tomas Villamil
Affiliation:
2Department of Geological Sciences, University of Colorado, Boulder 80309-0250 3Present address: Advance Exploration Organization, Conoco Inc., 600 North Dairy Ashford OF 3084, Houston, TX 77079
Erle G. Kauffman
Affiliation:
2Department of Geological Sciences, University of Colorado, Boulder 80309-0250 4Present address: Department of Geology, Indiana University, Bloomington 47405

Abstract

Mass mortality surfaces and bioclastic lags in Turonian siliceous shales of the San Rafael and La Frontera formations in Colombia have yielded two species of decapod crustaceans, Opthalmoplax spinosus new species and Pinnotheres? species indeterminate, as well as one stomatopod, Sculda sp. All represent first records for the country. Remains of the swimming carcineretid crab, Opthalmoplax spinosus, in association with fish fragments and pelagic ammonites, cover mass mortality surfaces. The occurrence suggests that the high density living population of the crabs, exploiting abundant food resources in areas of topography-controlled upwelling, was periodically reduced catastrophically, perhaps by advection of toxic trace elements or by oxygen starvation. Two other taphofacies, characterized by current oriented appendage fragments and scattered skeletal elements represent normal accumulations of fossil material in the San Rafael and La Frontera formations.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batt, R. J. 1989. Ammonite shell morphotype distributions in the Western Interior Greenhorn Sea and some paleoecological implications. Palaios, 4:3242.CrossRefGoogle Scholar
Berry, C. T. 1939. A summary of the fossil Crustacea of the Order Stomatopoda, and a description of a new species from Angola. American Midland Naturalist, 21:461471.Google Scholar
Beurlen, K. 1930. Nachträge zur Decapoden-fauna des schwäbischen Jura. Neues Jahrbuch für Mineralogie, Geologie, und Palaöntologie, Beil-Bd. 64, ser. B:219234, pl. 15.Google Scholar
Bishop, G. 1986. Taphonomy of the North American decapods. Journal of Crustacean Biology, 6:326355.Google Scholar
Bosc, L. A. G. 1802. Histoire naturelle des Crustacés, contenant leur description et leurs moeurs; avec figures dessinées d'après nature. Published privately, Paris, 258 p.Google Scholar
Cáceres, C., and Etayo, F. 1969. Bosquejo Geológico de la región del Tequendama: ler Congreso Colombiano de Geología, Opúsculo Guia, p. 122.Google Scholar
Chase, F. A. Jr., and Hobbs, H. H. Jr. 1969. The freshwater and terrestrial decapod crustaceans of the West Indies with special reference to Dominica: Smithsonian Institution, United States National Museum Bulletin 292, 258 p.Google Scholar
Cummins, H., Powell, E. N., Stanton, R. J., and Staff, G. 1986. The rate of taphonomic loss in modern benthic habitats: How much of the potentially preservable community is preserved? Palaeogeography, Palaeoclimatology, Palaeoecology, 52:291320.Google Scholar
Dames, W. B. 1886. Ueber einige Crustaceen aus den Kreideablagerungen des Libanon. Deutsche Geologische Gesellschaft Zeitschrifft, 38:551575.Google Scholar
Etayo, F. 1968. El sistema Cretáceo en la región de Villa de Leiva y zonas próximas. Geología Colombiana, 5:574.Google Scholar
Etayo, F. 1979. Zonation of the Cretaceous of Central Colombia by ammonites. Publicaciones Geologicas Especiales, Ingeominas, 2, 186 p.Google Scholar
Glaessner, M. F. 1969. Decapoda, p. R399R651. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part R, Arthropoda 4. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Guinot, D. 1977. Propositions pour une nouvelle classification des Crustacés Décapodes Brachyoures. Compte Rendu Académie des Science de Paris, serie D, 285:10491052.Google Scholar
Haan, W. de. 1833-1850. Crustacea, p. 109164. In de Siebold, P. F., Fauna Japonica sive descriptio animalium, quae in itinere per Japoniam, jussu et auspiciis superiorum, qui summum in India Batava Imperium tenent, suscepto, annis 1823-1830 collegit, notis, observationibus et adumbrationibus illustravit. A. Amz, London.Google Scholar
Hoff, C. H. J., and Briggs, D. E. G. 1997. Decay and mineralization of mantis shrimps (Stomatopoda: Crustacea)—a key to their fossil record. Palaios, 12:420438.Google Scholar
Holthuis, L. B., and Manning, R. B. 1969. Stomatopoda, p. R535R552. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part R4(2), Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Kauffman, E. G. 1984. Paleobiogeography and evolutionary response dynamics in the Cretaceous Western Interior seaway of North America, p. 273306. In Westerman, G. E. G. (ed.), Jurassic-Cretaceous Biochronology and Paleogeography of North America. Geological Association of Canada Special Paper 27.Google Scholar
Latreille, P. A. 1802-1803. Histoire naturelle, général et particuliére, des crustacés et des insectes. F. Dufart, Paris, 468 p.Google Scholar
Latreille, P. A. 1817. Les crustacés, les arachnides et les insectes, 653 p. In Cuvier, G., Le règne animal distribué d'après son organisation, pour servir de base àl'histoire naturelle des animaux et d'introduction à l'anatomie comparée, Déterville, Paris.Google Scholar
McDonough, K. J., and Cross, T. 1991. Late Cretaceous sea level from a paleoshoreline. Journal of Geophysical Research, 96:65916607.Google Scholar
Münster, G. G. Zu. 1840. Über einige Isopoden in den Kalkschiefern von Bayern, Beitr. Petrefactenkunde, pt. 3:1923.Google Scholar
Plotnick, R., Baumiller, T., and Wetmore, K. 1988. Fossilization potential of the mud crab Panopeus (Brachyura: Xanthidae) and temporal variability in crustacean taphonomy. Palaeogeography, Palaeoclimatology, Palaeoecology, 63:2743.Google Scholar
Plotnick, R., McCarroll, S., and Powell, E. 1990. Crab death assemblages from Laguna Madre and vicinity, Texas. Palaios, 5:8187.Google Scholar
Powell, E. N., Stanton, R. J. Jr., Cummins, H., and Staff, G. 1982. Temporal fluctuations in bay environments—The death assemblage as a key to the past, p. 203232. In Davis, J. R. (ed.), Proceedings of the Symposium on Recent Benthological Investigations in Texas and Adjacent States: Texas Academy of Science, Austin, Texas.Google Scholar
Rafinesque, C. S. 1815. Analyse de la Nature, ou Tableau de l'Univers et des corps Organisés. Published privately, Palermo, 224 p.Google Scholar
Rathbun, M. J. 1930. The candroid crabs of America of the families Euryalidae, Portunidae, Atelecyclidae, Cancridae and Xanthidae. United States National Museum Bulletin 292, 609 p.Google Scholar
Rathbun, M. J. 1935. Fossil Crustacea of the Atlantic and Gulf coastal plain. Geological Society of America, Special Papers 2, 160 p.Google Scholar
Rathbun, M. J. 1937. Cretaceous and Tertiary crabs from Panama and Colombia. Journal of Paleontology, 11:2628.Google Scholar
Reaka, M. L., and Manning, R. B. 1987. The significance of body size, dispersal potential, and habitat for rates of morphological evolution in stomatopod Crustacea. Smithsonian Contributions to Zoology, 448, 46 p.Google Scholar
Schäfer, W. 1972. Ecology and Palaeoecology of Marine Environments. The University of Chicago Press, Chicago, 568 p.Google Scholar
Schram, F. R. 1968. Paleosquilla gen. nov.—a stomatopod (Crustacea) from the Cretaceous of Colombia. Journal of Paleontology, 42:12971301.Google Scholar
Schram, F. R. 1986. Crustacea. Oxford University Press, Oxford, 606 p.Google Scholar
Tshudy, D. M., Feldmann, R. M., and Ward, P. D. 1989. Cephalopods: biasing agents in the preservation of lobsters. Journal of Paleontology, 63:621626.Google Scholar
Villamil, T. 1994. High-resolution stratigraphy, chronology and relative sea level of the Albian-Santonian (Cretaceous) of Colombia. , , 462 p.Google Scholar
Villamil, T. 1996 Paleobiology of two new species of the bivalve Anomia from Colombia and Venezuela and the importance of the genus in recognition of the base of the Turonian. Cretaceous Research, 17:607632.Google Scholar
Villamil, T. and Arango, C. 1998. Integrated stratigraphy of latest Cenomanian-Early Turonian facies of Colombia. In Pindell, J., and Drake, C. (eds.), Eustasy and Tectonostratigraphic Evolution of Northern South America. SEPM Special Publication 58:129159.Google Scholar
Villamil, T. C. Arango. and Hay, W. W. In press. A plate tectonic paleoceanographic hypothesis for Cretaceous source-rocks and cherts of northern South America, p. -. In Barrera, E. and Johnson, C. (eds.), The Evolution of Cretaceous Oceans and Climate. Geological Society of America Special Paper, in press.Google Scholar
Williams, A. B. 1984. Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States, Maine to Florida. Smithsonian Institution Press, Washington, 550 p.Google Scholar