Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T07:47:59.140Z Has data issue: false hasContentIssue false

Corynotrypa from the Ordovician of North America: colony growth in a primitive stenolaemate bryozoan

Published online by Cambridge University Press:  20 May 2016

Paul D. Taylor
Affiliation:
Department of Palaeontology, The Natural History Museum, London SW7 5BD, UK
Mark A. Wilson
Affiliation:
Department of Geology, The College of Wooster, Wooster, Ohio 44691

Abstract

Colonies of the runner-like bryozoans Corynotrypa delicatula (James) and C. inflata (Hall) are common encrusters of Middle and Upper Ordovician shells and hardgrounds, especially in Cincinnatian deposits. The simplicity of their zooids contrasts with complexities in the dynamics of colonial organization. Both species have uniserial branches that bifurcate at intervals and, in addition, give rise periodically to lateral ramifications. Although angles of bifurcation and lateral ramification each average about 80°, bifurcations and lateral ramifications are fundamentally different modes of branch multiplication. In C. delicatula new lateral branches have conspicuous secondary zones of astogenetic change distinguished by elongation of successively budded zooids. Unlike bifurcations, the first zooids in lateral branches in Corynotrypa are not linked to the parent branch by a narrow basal canal, and each new lateral branch can be regarded as a distinct subcolonial unit. The ancestrula, described here for the first time in an Ordovician species of Corynotrypa, has a poorly differentiated protoecium and initiates a primary zone of astogenetic change. Colony growth in Corynotrypa was more plastic than in many other bryozoan runners. The systematics of C. delicatula and C. inflata are revised, and a lectotype is chosen for the former species.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, R. R., and Scharpf, C. D. 1990. Epizoans on late Ordovician brachiopods from southeastern Indiana. Historical Biology, 4:179202.CrossRefGoogle Scholar
Anstey, R. L. 1990. Bryozoans, p. 232252. In McNamara, K. J. (ed.), Evolutionary Trends. University of Arizona Press, Tucson.Google Scholar
Anstey, R. L., Pachut, J. F., and Prezbindowski, D. R. 1976. Morphogenetic gradients in Paleozoic bryozoan colonies. Paleobiology, 2:131146.Google Scholar
Bassler, R. S. 1906. A study of the James types of Ordovician and Silurian Bryozoa. Proceedings of the United States National Museum, 30(1442):166.Google Scholar
Bassler, R. S. 1911. Corynotrypa, a new genus of tubuliporoid Bryozoa. Proceedings of the United States National Museum, 39(1797):497527.Google Scholar
Bassler, R. S. 1953. Bryozoa, p. G1G253. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. G. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Bell, A. D. 1986. The simulation of branching patterns in modular organisms. Philosophical Transactions of the Royal Society of London, Series B, 313:143159.Google Scholar
Bishop, J. D. D. 1989. Colony form and the exploitation of spatial refuges by encrusting Bryozoa. Biological Reviews, 64:197218.Google Scholar
Blake, D. B., and Snyder, E. M. 1987. Phenetic and cladistic analyses of the Rhabdomesina (Bryozoa) and similar taxa: a preliminary study, p. 3340. In Ross, J. R. P. (ed.), Bryozoa: Present and Past. Western Washington University, Bellingham.Google Scholar
Boardman, R. S., and Cheetham, A. H. 1973. Degrees of colony dominance in stenolaemate and gymnolaemate Bryozoa, p. 121220. In Boardman, R. S., Cheetham, A. H. and Oliver, W. J. (eds.), Animal Colonies. Dowden, Hutchinson and Ross, Stroudsburg.Google Scholar
Boardman, R. S., and McKinney, F. K. 1976. Skeletal architecture and preserved organs of four-sided zooids in convergent genera of Paleozoic Trepostomata (Bryozoa). Journal of Paleontology, 50:2578.Google Scholar
Boardman, R. S., McKinney, F. K., and Taylor, P. D. 1992. Morphology, anatomy, and systematics of the Cinctiporidae, new family (Bryozoa: Stenolaemata). Smithsonian Contributions to Paleobiology, 70:181.Google Scholar
Borg, F. 1926. Studies on Recent cyclostomatous Bryozoa. Zoological Bidrag Uppsala, 10:182507.Google Scholar
Brett, C. E., and Brookfield, M. E. 1984. Morphology, faunas and genesis of Ordovician hardgrounds from southern Ontario, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 46:233290.Google Scholar
Brett, C. E., and Liddell, W. D. 1978. Preservation and paleoecology of a middle Ordovician hardground community. Paleobiology, 4:329348.Google Scholar
Brood, K. 1973. Palaeozoic Cyclostomata (a preliminary report), p. 247256. In Larwood, G. P. (ed.), Living and Fossil Bryozoa. Academic Press, London.Google Scholar
Brood, K. 1975. Cyclostomatous Bryozoa from the Silurian of Gotland. Stockholm Contributions in Geology, 28:45119.Google Scholar
Brood, K. 1976. Wall structure and evolution in cyclostomate Bryozoa. Lethaia, 9:377389.Google Scholar
Busk, G. 1852. An account of the Polyzoa, and sertularian Zoophytes, collected in the Voyage of the Rattlesnake, on the Coasts of Australia and the Loisiade Archipelago, &c., p. 343402. In MacGillivray, J., Narrative of the Voyage of H.M.S. Rattlesnake, … during the years 1846-1850, Volume 1, Boone, London.Google Scholar
Buss, L. W., and Blackstone, N. W. 1991. An experimental exploration of Waddington's epigenetic landscape. Philosophical Transactions of the Royal Society of London, Series B, 332:4958.Google Scholar
Carthew, R. 1987. The cyclostome bryozoan Corynotrypa from the Silurian of Gotland, Sweden, p. 5764. In Ross, J. R. P. (ed.), Bryozoa: Present and Past. Western Washington University, Bellingham.Google Scholar
Cook, P. L. 1977. Early colony development in Aetea (Bryozoa). American Zoologist, 17:5561.Google Scholar
Cumings, E. R. 1908. The stratigraphy and paleontology of the Cincinnatian Series of Indiana. Indiana Department of Geology and Natural Resources Annual report, 32:6051188.Google Scholar
Dauget, J.-M. 1991. La réitération adaptative, un nouvel aspect de la croissance de certains Scléractiniaires récifaux. Exemple chez Porites sp., cf. cylindrica Dana. Compte Rendu de l'Académie des Sciences, Paris, 313, Série 3:4549.Google Scholar
Dzik, J. 1981. Evolutionary relationships of the early Paleozoic “cyclostomatous” Bryozoa. Palaeontology, 24:827861.Google Scholar
Ehrenberg, C. G. 1831. Hemprich et Ehrenberg Symbolae Physicae. Animalia Evertebrata exclusis Insectis. Officina Academica, Berolini [unpaginated].Google Scholar
Gardiner, A. R., and Taylor, P. D. 1982. Computer modelling of branching growth in the bryozoan Stomatopora. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 163:389416.Google Scholar
Hall, J. 1847. Organic remains of the lower division of the New-York system. Natural History of New York, Part 6, Palaeontology of New-York, 1, 338 p.Google Scholar
Hayward, P. J., and Ryland, J. S. 1979. British ascophoran bryozoans. Synopses of the British Fauna (New Series), 14:1312.Google Scholar
Illies, G. 1963. Über Stomatopora dichotoma (LAMX.) und St. dichotomoides (d'ORB.) [Bryoz. Cycl.] aus dem Dogger des Oberrheingebeites. Oberrheinische Geologische Abhandlungen, 12:4580.Google Scholar
Illies, G. 1976. Budding and branching patterns in the genera Stomatopora BRONN, 1825 and Voigtopora BASSLER, 1952 (Bryozoa, Cyclostomata). Oberrheinische Geologische Abhandlungen, 25:97110.Google Scholar
Jackson, J. B. C. 1979. Morphological strategies of sessile animals, p. 499555. In Larwood, G. P. and Rosen, B. R. (eds.), Biology and Systematics of Colonial Organisms. Academic Press, London.Google Scholar
James, U. P. 1878. Descriptions of newly discovered species of fossils from the Lower Silurian Formation—Cincinnati Group. The Paleontologist, 1:18.Google Scholar
Kiepura, M. 1962. Bryozoa from the Ordovician erratic boulders of Poland. Acta Palaeontologica Polonica, 7:347428.Google Scholar
Larwood, G. P., and Taylor, P. D. 1979. Early structural and ecological diversification in the Bryozoa, p. 209234. In House, M. R. (ed.), The Origin of Major Invertebrate Groups. Academic Press, London.Google Scholar
McKinney, F. K., and Jackson, J. B. C. 1989. Bryozoan Evolution. Unwin Hyman, Boston, 238 p.Google Scholar
Miller, S. A. 1882. Description of two new genera and eight new species. Journal of the Cincinnati Society of Natural History, 5:3444.Google Scholar
Moyano, H. I. 1986. Bryozoa Marinos Chilenos VI. Cheilostomata Hippothoidae: Las especies del Pacífico Sudoriental. Boletín de la Sociedad de Biologia de Concepción, 57:89135.Google Scholar
Nicholson, H. A. 1875a. Descriptions of species of Hippothoa and Alecto from the Lower Silurian rocks of Ohio, with a description of Aulopora arachnoidea Hall. Annals and Magazine of Natural History, 15:15.Google Scholar
Nicholson, H. A. 1875b. Description of the corals of the Silurian and Devonian Systems. Report of the Geological Survey of Ohio, 2, Part 2 (Palaeontology):181268.Google Scholar
Nickles, J. M., and Bassler, R. S. 1900. A synopsis of American fossil Bryozoa, including bibliography and synonymy. Bulletin of the U.S. Geological Survey, 173:1663.Google Scholar
Palmer, T. J. 1982. Cambrian to Cretaceous changes in hardground communities. Lethaia, 15:309323.Google Scholar
Pandolfi, J. M. 1984. Environmental influence on growth form in some massive tabulate corals from the Hamilton Group (Middle Devonian) of New York State. Palaeontographica Americana, 54:538542.Google Scholar
Pandolfi, J. M. 1988. Heterochrony in colonial marine animals, p. 135158. In McKinney, M. L. (ed.), Heterochrony in Evolution: A Multidisciplinary Approach. Plenum, New York.Google Scholar
Pitt, L. J., and Taylor, P. D. 1990. Cretaceous Bryozoa from the Faringdon Sponge Gravel (Aptian). Bulletin of the British Museum (Natural History) (Geology Series), 46:61152.Google Scholar
Ruedemann, R. 1901. Trenton conglomerate of Rysedorph Hill Rensselaer Co. N.Y. and its fauna. Bulletin of the New York State Museum, 49:3114.Google Scholar
Silén, L. 1987. Colony growth pattern in Electra pilosa (Linnaeus) and comparable encrusting cheilostome bryozoans. Acta Zoologica, 68:1734.CrossRefGoogle Scholar
Simpson, G. B. 1897. A handbook of the genera of the North American Palaeozoic Bryozoa; with an introduction upon the structure of living species. Annual Report of the State Geologist of New York, 14:403669.Google Scholar
Strong, D. R., and Ray, T. S. 1975. Host tree location behavior of a tropical vine (Monstera gigantea) by skototropism. Science, 190:804806.Google Scholar
Taylor, P. D. 1979. Functional significance of contrasting colony form in two Mesozoic encrusting bryozoans. Palaeogeography, Palaeoclimatology, Palaeoecology, 26:151158.Google Scholar
Taylor, P. D. 1985. Carboniferous and Permian species of the cyclostome bryozoan Corynotrypa Bassler, 1911 and their clonal propagation. Bulletin of the British Museum (Natural History) (Geology Series), 38:359372.Google Scholar
Taylor, P. D. 1986a. Scanning electron microscopy of uncoated fossils. Palaeontology, 29:685690.Google Scholar
Taylor, P. D. 1986b. Charixa Lang and Spinicharixa gen. nov., cheilostome bryozoans from the Lower Cretaceous. Bulletin of the British Museum (Natural History) (Geology Series), 40:197222.Google Scholar
Taylor, P. D. 1988. Colony growth pattern and astogenetic gradients in the Cretaceous cheilostome bryozoan Herpetopora. Palaeontology, 31:519549.Google Scholar
Taylor, P. D. 1990. The impact of the SEM in studies of living and fossil bryozoans, p. 259280. In Claugher, D. (ed.), Scanning Electron Microscopy in Taxonomy and Functional Morphology. Clarendon Press, Oxford.Google Scholar
Taylor, P. D., and Furness, R. W. 1978. Astogenetic and environmental variation of zooid size within colonies of Jurassic Stomatopora (Bryozoa, Cyclostomata). Journal of Paleontology, 52:10931102.Google Scholar
Taylor, P. D., and Larwood, G. P. 1991. Major evolutionary radiations in the Bryozoa, p. 209233. In Taylor, P. D. and Larwood, G. P. (eds.), Major Evolutionary Radiations. Clarendon Press, Oxford.Google Scholar
Ulrich, E. O. 1886. Report of the Lower Silurian Bryozoa with preliminary descriptions of some new species. Minnesota Geology and Natural History Survey Annual report, 14:57103.Google Scholar
Ulrich, E. O. 1890. New Lower Silurian Bryozoa. Journal of the Cincinnati Society of Natural History, 12:173198.Google Scholar
Ulrich, E. O. 1893. On Lower Silurian Bryozoa of Minnesota. Minnesota Geology and Natural History Survey Final report, 3:96332.Google Scholar
Ulrich, E. O., and Ruedemann, R. 1931. Are the graptolites bryozoans? Geological Society of America Bulletin, 42:589604.Google Scholar
Urbanek, A., and Uchmanski, J. 1990. Morphogenesis of uniaxiate graptoloid colonies—a mathematical model. Paleobiology, 16:4961.Google Scholar
Vine, G. R. 1881. Silurian uniserial Stomatoporae and Ascodictya. Quarterly Journal of the Geological Society of London, 37:613619.Google Scholar
Voigt, E. 1988. Wachstums- und Knospungsstrategie von Grammothoa filifera VOIGT & HILLMER (Bryozoa, Cheilostomata, Ob. Kreide). Paläontologische Zeitschrift. 62:193203.Google Scholar
Waller, D. M., and Steingraeber, D. A. 1985. Branching and modular growth: theoretical models and empirical patterns, p. 225257. In Jackson, J. B. C., Buss, L. W., and Cook, R. E. (eds.), Population Biology and Evolution of Clonal Organisms. Yale University Press, Yale.Google Scholar
Wilson, M. A. 1985. Disturbance and ecologic succession in an upper Ordovician cobble-dwelling hardground fauna. Science, 228:575577.Google Scholar
Wilson, M. A. 1987. Ecological dynamics on pebbles, cobbles, and boulders. Palaios, 2:594599.Google Scholar
Wilson, M. A., and Palmer, T. J. 1989. Preparation of acetate peels, p. 142145. In Feldmann, R. M., Chapman, R. E., and Hannibal, J. T. (eds.), Paleotechniques. Paleontological Society Special Publication No. 4.Google Scholar