Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T02:59:10.802Z Has data issue: false hasContentIssue false

Coniferous woods from the Upper Triassic of southwestern Gondwana, Tronquimalal Group, Neuquén Basin, Mendoza Province, Argentina

Published online by Cambridge University Press:  02 March 2020

Silvia C. Gnaedinger
Affiliation:
CONICET - Centro de Ecología Aplicada del Litoral, Área de Paleontología (CECOAL-CCT-CONICET Nordeste-UNNE), Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (FaCENA-UNNE), Ruta 5, Km 2,5, Casilla correo 291, CP 3400, Corrientes, Argentina
Ana María Zavattieri
Affiliation:
Departamento de Paleontología, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales IANIGLA, CCT-CONICET Mendoza, Av. Adrián Ruiz Leal s./n., Parque General San Martín, Casilla de Correo 330, Mendoza M5502IRA, Argentina

Abstract

Late Triassic coniferous species of silicified woods are described from the Tronquimalal Group, Llantenes Depocenter of the Neuquén Basin, southern Mendoza Province, Argentina. The new species Agathoxylon cozzoi and Agathoxylon lamaibandianus Crisafulli and Herbst, 2011 described in this study were found in proximal volcaniclastic facies deposited in alluvial fans and proximal braided river plains of the Chihuido Formation, which is the basal unit of the Group. The species A. lamaibandianus Crisafulli and Herbst, Protojuniperoxylon ischigualastense (Bonetti, 1966) Bodnar and Artabe, 2007, and the new species Cupressinoxylon llantenesense also described in this study were collected from the upper fluvio-deltaic plain and delta-plain deposits that prograded into a large, meromictic and wedge-shaped lake of the overlying Llantenes Formation. The Tronquimalal Group yields abundant and well-known Triassic plant remains of the Southern Gondwana “Dicroidium Flora,” although it also contains typical early Jurassic taxa displaying age affinities with other Argentinean “Florian Stage” communities of Late Triassic (Norian–?Rhaetian). The lignotaxa described from both units of the Tronquimalal Group may all together represent coniferous forests of the extratropical area of the Southwestern Province of Gondwana. Deciduous conifer forests associated with herbaceous and shrub communities dominated by ferns and smaller corystosperms, and other taxa including the Linguifolium leaves within the Llantenes Depocenter environments, were developed on the western margin of the continent under seasonal temperate-warm and humid to sub-humid climate with a marine influence from the west.

Type
Articles
Copyright
Copyright © 2020, The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, H.M., and Anderson, J.M., 1970, A preliminary review of the uppermost Permian, Triassic and lowermost Jurassic of Gondwanaland: Palaeontologia Africana, v. 13, p. 122.Google Scholar
Anderson, J.M., and Anderson, H.M., 1993, Terrestrial flora and fauna of the Gondwana Triassic: part 2. Co-evolution, in Lucas, S.G., and Morales, M., eds., The Nonmarine Triassic: Bulletin of the New Mexico Museum of Natural History and Sciences, 3, p. 1325.Google Scholar
Anderson, J.M., Anderson, H.M., Archangelsky, S., Bamford, H., Chandra, S., Dettmann, M., Hill, R., McLoughlin, S., and Rosler, O., 1999, Patterns of Gondwana plant colonization and diversification: Journal of African Earth Sciences 28, p. 145167.CrossRefGoogle Scholar
Anderson, J.M., Anderson, H.M., and Cleal, C.J., 2007, Brief History of the Gymnosperms: Classification, Biodiversity, Phytogeography, and Ecology: Pretoria, Strelitzia South African National Biodiversity Institute, p. 1280.Google Scholar
Arber, E.A.N., 1913, A preliminary note on the fossil plants of the Mount Potts Beds, New Zealand, collected by Mr. D. G. Lillie, Biologist to Captain Scott's Antarctic Expedition in the “Terra Nova”: Proceedings of the Royal Society of London B, v. 86, p. 344347.Google Scholar
Arber, E.A.N., 1917, The earlier Mesozoic floras of New Zealand: New Zealand Geological Survey, Palaeontological Bulletin, v. 6, p. 278.Google Scholar
Arcila Gallego, P.A., 2010, Los depósitos sinorogénicos del sur de Mendoza y su relación con la faja plegada y corrida de Malargüe (35°-36°S), Mendoza. Argentina [M.Sc. thesis]: Buenos Aires, University of Buenos Aires, Biblioteca Digital FCEN-UBA Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, 379 p. www.digital.bl.fcen.uba.arGoogle Scholar
Artabe, A.E., 1990, Revalidación del género triásico Zuberia Frenguelli 1943, Familia Corystospermaceae: Revista del Museo de La Plata, nueva serie Paleontología, v. 9, p. 145157.Google Scholar
Artabe, A.E., and Morel, E.M., 1983, Novedades en la flora triásica de la Quebrada de Llantenes, Provincia de Mendoza: 5° Simposio Argentino de Paleobotánica y Palinología, Resúmenes, La Plata, p. 12.Google Scholar
Artabe, A.E., Morel, E.M., Spalletti, L.A., and Brea, M., 1998, Paleoambientes sedimentarios y paleoflora asociada en el Triásico tardío de Malargüe, Mendoza: Revista de la Asociación Geológica Argentina v. 53, p. 526548.Google Scholar
Artabe, A.E., Morel, E.M., and Spalletti, L.A., 2001, Paleoecología de las floras triásicas argentinas, in Artabe, A.E., Morel, E.M., and Zamuner, A.B., eds., El Sistema Triásico en la Argentina: La Plata, Fundación Museo de La Plata “Francisco Pascasio Moreno,” p. 199225.Google Scholar
Artabe, A.E., Morel, E.M., and Spalletti, L.A., 2003, Caracterización de las provincias fitogeográficas triásicas del Gondwana extratropical: Ameghiniana 40, p. 387405.Google Scholar
Ash, S.R., and Creber, G.T., 2000, The Late Triassic Araucarioxylon arizonicum trees of the Petrified Forest National Park, Arizona, U.S.A.: Palaeontology, v. 43, p. 1528.CrossRefGoogle Scholar
Attims, Y., 1965, Etude anatomique et paléogéographique de quelques bois jurassiques du Maroc: Notes Du Service Geologique Du Maroc, v. 24, p. 3352.Google Scholar
Baldoni, A.M., 1980, Revisión de las especies del género Xylopteris (Corystospermaceae) en el Triásico de Argentina, Australia y Sudáfrica: Ameghiniana v. 17, p. 135155.Google Scholar
Bamford, M., and Philippe, M., 2001, Jurassic–Early Cretaceous Gondwanan homoxylous woods, a nomenclatural revision of the genera with taxonomic notes: Review of Palaeobotany and Palynology, v. 113, p. 287297.CrossRefGoogle ScholarPubMed
Bamford, M., Zijlstra, G., and Philippe, M., 2002, Proposal to conserve the name Cupressinoxylon Göppert (Fossil, Gymnospermae, Coniferales) against Retinodendron Zenker (Fossil, Gymnospermae, Coniferales), with a conserved type: Taxon v. 51, p. 205206.CrossRefGoogle Scholar
Bauch, J., Liese, W., and Schultze, R., 1972, The morphological variability of the bordered pit membranes in gymnosperms: Wood Science and Technology, v. 6, p. 165184.CrossRefGoogle Scholar
Bhardwaj, D.C., 1953, Jurassic woods from the Rajmahal Hills Bihar: Palaeobotanist, v. 2, p. 5970.Google Scholar
Bodnar, J., and Artabe, A.E., 2007, Estudio sistemático y paleodendrológico del leño de una Cupressaceae triásica de la Formación Ischigualasto, provincia de San Juan, Argentina: Ameghiniana, v. 44, p. 303319.Google Scholar
Bodnar, J., and Falco, J.I., 2018, Fossil Conifer Woods from Cerro Piche Graben (Triassic–Jurassic?), North Patagonian Massif, Río Negro Province, Argentina: Ameghiniana, v. 55, p. 356362.CrossRefGoogle Scholar
Bodnar, J., Escapa, I., Cúneo, N.R., and Gnaedinger, S., 2013, First record of Conifer wood from the Cañadón Asfalto Formation (Early–Middle Jurassic), Chubut province, Argentina: Ameghiniana, v. 50, p. 227239.CrossRefGoogle Scholar
Bodnar, J., Ruiz, D.P., Artabe, A.E., Morel, E.M., and Ganuza, D., 2015, Voltziales y Pinales (=Coniferales) de la Formación Cortaderita (Triásico Medio), Argentina, y su implicancia en la Reconstrucción de las coníferas triásicas: Revista Brasileira de Paleontologia, v. 18, p. 141160.CrossRefGoogle Scholar
Bomfleur, B., Decombeix, A.L., Escapa, I.H., Schwendemann, A.B., and Axsmith, B.J., 2013, Whole-plant concept and environment reconstruction of a Telemachus conifer (Voltziales) from the Triassic of Antarctica: International Journal of Plant Sciences, v. 174, p. 425444.CrossRefGoogle Scholar
Bonetti, M.I.R., 1966, Protojuniperoxylon ischigualastensis sp. nov. del Triásico de Ischigualasto (San Juan): Ameghiniana, v. 4, p. 211218.Google Scholar
Boureau, E., 1948, Etude paléoxylologique du Sahara. I. Presence du Dadoxylon (Araucarioxylon) dallonii n. sp.: Bulletin du Muséum d'Histoire Naturelle, v. 20, p. 420426.Google Scholar
Boureau, E., 1956, Anatomie Végétale: L´appareil végétatif des Phanérogames. Tome Second: París, Presses Universitaires de France, 524 p.Google Scholar
Brauckmann, C., Gallego, O.F., Haushchke, N., Martins-Neto, R.G., Groening, E., Ilger, J.M., and Lara, M.B., 2010, First Late Triassic record of a paleoentomofauna from South America (Malargüe Basin, Mendoza Province, Argentina): Acta Geologica Sinica, v. 84, p. 915924.CrossRefGoogle Scholar
Braun, C.F.W., 1843, Beiträge zur Urgeschichte der Pflanzen: Beiträge zur Petrefactenkunde, v. 6, p. 133.Google Scholar
Brea, M., 1997, Una nueva especie fósil del género Araucarioxylon Kraus 1870 emend. Maheshwari 1972 del Triásico de Agua de la Zorra, Uspallata, Mendoza, Argentina: Ameghiniana, v. 34, p. 485496.Google Scholar
Brea, M., Artabe, A., and Spalletti, L.A., 2008, Ecological reconstruction of a mixed Middle Triassic forest from Argentina: Alcheringa, v. 32, p. 365393.CrossRefGoogle Scholar
Brea, M., Artabe, A., and Spalletti, L.A., 2009, El Bosque Darwin en Agua de la Zorra: El primer bosque in situ descubierto en América del Sur por Darwin en 1835: Revista de la Asociación Geológica Argentina, v. 64, p. 2131.Google Scholar
Brea, M., Bellosi, E.S., Umazano, A.M., and Krause, J.M., 2016, Aptian–Albian Cupressaceae (sensu stricto) woods from Cañadón Asfalto Basin, Patagonia Argentina: Cretaceous Research, v. 58, p. 1728.CrossRefGoogle Scholar
Brison, A.L., Philippe, M., and Thevenard, F., 2001, Are Mesozoic wood growth rings climate-induced?: Paleobiology, v. 27, p. 531538.2.0.CO;2>CrossRefGoogle Scholar
Brodribb, T., Pittermann, J., and Coomes, D.A., 2012, Elegance versus speed: examining the competition between conifer and angiosperm trees: International Journal of Plant Sciences, v. 173, p. 673694.Google Scholar
Brongniart, A., 1828, Prodrome d'une Histoire des Végétaux Fossiles, ou recherches botaniques et géologiques sur les végétaux renfermés dans les diverses couches du globe: Paris, F.G. Levrault, v. 1, 223 p.Google Scholar
Burgert, I., Fruhman, K., Keckes, J., Fratzl, P., and Stanzl-Tschegg, S., 2004, Structure-function relationships of four compression wood types: micromechanical properties at the tissue and fibre level: Trees, v. 18, p. 480485.Google Scholar
Carruthers, W., 1872, Notes on fossil plants from Queensland, Australia: Quarterly Journal of the Geological Society, v. 28, p. 350358.Google Scholar
Chattaway, M., 1932, Proposed standard for numerical values used in describing woods: Tropical Woods, v. 59, p. 2028.Google Scholar
Cookson, I.C., 1947, Plant microfossils from the lignites of Kerguelen Archipelago: British-Australian-New Zealand (BANZ) Antarctic Research Expedition 1929–1931: Report A. v. 8, p. 127142.Google Scholar
Couper, R.A., 1953, Upper Mesozoic and Cainozoic spores and pollen grains from New Zealand: New Zealand Geological Survey, Paleontological Bulletin, v. 22, p. 177.Google Scholar
Creber, G.T., and Chaloner, W.G., 1984, Influence of environmental factors on the wood structure of living and fossil trees: Botanical Review, v. 50, p. 357448.CrossRefGoogle Scholar
Crisafulli, A., and Herbst, R., 2010, Leños gimnospérmicos de la Formación Llantenes (Triásico Superior), Provincia de Mendoza, Argentina: GAEA Journal of Science, v. 6, p. 1420.CrossRefGoogle Scholar
Crisafulli, A., and Herbst, R., 2011, La Flora Triásica del Grupo El Tranquilo, provincia de Santa Cruz (Patagonia): Leños Fósiles: Ameghiniana, v. 4, p. 275288.Google Scholar
Cúneo, R., Ramezani, J., Scasso, R., Pol, D., Escapa, I., Zavattieri, A.M., and Bowring, S.A., 2013, High-Precision U-Pb Geochronology and a new chronostratigraphy for the Cañadón Asfalto Basin, Chubut, central Patagonia: implications for terrestrial faunal and floral evolution in Jurassic: Gondwana Research, v. 24, 12671275.Google Scholar
de Jersey, N.J., 1964, Triassic spores and pollen grains from the Bundamba Group: Geological Survey of Queensland, v. 321, p. 121.Google Scholar
de Jersey, N.J., and McKellar, J.L., 2013, The palynology of the Triassic-Jurassic transition in southeastern Queensland, Australia, and correlation with New Zealand: Palynology, v. 37, p. 77114.CrossRefGoogle Scholar
Dessanti, R.N., 1973, Descripción Geológica de la Hoja 29b Bardas Blancas (Mendoza): Servicio Nacional Minero Geológico, Boletín 139, p. 1–70.Google Scholar
Dolezych, M., and Schneider, W., 2006, Xylotomie und feinstratigraphisch-fazielle Zuordnung von inkohlten Hölzern und dispersen Kutikulen aus dem 2. Lausitzer Flöz (Miozän) im Tagebau Welzow: Zeitschrift für Geologische Wissenschaften, v. 34, p. 165259.Google Scholar
Dolezych, M. and Van der Burgh, J. 2004. Xylotomische Untersuchungen an inkohlten Hölzern aus dem Braunkohltegebau Berzdorf (Oberlausitz, Deutschland): Feddes Repertorium, v. 115, p. 397–342.CrossRefGoogle Scholar
du Toit, A.L., 1927, The Fossil Flora of the Upper Karroo beds: Annals of the South African Museum, v. 22, p. 289418.Google Scholar
Dubiel, R.F., Parrish, J.T., Parrish, J.M., and Good, S.C., 1991, The Pangaean megamonsoon—evidence from the Upper Triassic Chinle Formation, Colorado Plateau: Palaios, v. 6, p. 347370.CrossRefGoogle Scholar
Dumortier, B.C.J., 1829, Analyse des Familles des Plantes, avec l'indication des principaux genres qui s'y rattachent: Tournay, Casterman, 104 p.Google Scholar
Duperon-Laudoueneix, M., and Lejal-Nicol, A., 1981, Sur deux bois homoxylés du Sud-Ouest de'l Égypte: Congrés nacional des Sociétés savantes, 106, Sect: Sciences, v. 1, p. 940.Google Scholar
Eckhold, W., 1921, Die Hoftüpfel bei rezenten und fossilen Koniferen: Breslau, Hochschulverlag, 4 p.Google Scholar
Eckhold, W., 1922, Die Hoftüpfel bei rezenten und fossilen Coniferen: Jahrbuch Königliche Preussische Geologische Landesansalt, v. 42, p. 472505.Google Scholar
Egerton, V.M., Williams, C.J., and Lacovara, K.J., 2016, A new Late Cretaceous (late Campanian to early Maastrichtian) wood flora from southern Patagonia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 441, p. 305316.CrossRefGoogle Scholar
Engelund, E.T., Thygesen, L.G., Svensson, S., Hill, C.A.S., 2013, A critical discussion of the physics of wood-water interactions: Wood Science and Technology, v. 47, p. 141161.CrossRefGoogle Scholar
Erasmus, T., 1976, On the anatomy of Dadoxylon arberi Seward, with some remarks on the phylogenetical tendencies of its tracheid pits: Palaeontologia Africana, v. 19, p. 127133.Google Scholar
Falcon-Lang, H.J., 2005, Intra-tree variability in wood anatomy and its implications for fossil wood systematics and palaeoclimatic studies: Palaeontology, v. 48, p. 171184.CrossRefGoogle Scholar
Falcon-Lang, H.J., and Cantrill, D.J., 2000, Cretaceous (Late Albian) coniferales of Alexander Island, Antarctica. 1: wood taxonomy: a quantitative approach. Review of Palaeobotany and Palynology, v. 111, p. 117.Google Scholar
Falcon-Lang, H.J., and Cantrill, D.J., 2001, Gymnosperm woods from the Cretaceous (mid–Aptian) Cerro Negro Formation, Byers Peninsula, Livingston Island, Antarctica: the arborescent vegetation of a volcanic arc: Cretaceous Research, v. 22, p. 277293.Google Scholar
Fontaine, W.M., 1889, The Potomac or Younger Mesozoic Flora: United States Geological Survey, Washington, v. 15, p. 1377.Google Scholar
Franzese, J.R., and Spalletti, L.A., 2001, Late Triassic–early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre-break-up rifting: Journal of South American Earth Sciences, v. 14, p. 257270.Google Scholar
Frenguelli, J., 1943, Reseña crítica de los géneros atribuidos a la Serie de “Thinnfeldia: Revista del Museo de La Plata, nueva serie, Paleontologia, v. 2, p. 225342.Google Scholar
Frenguelli, J., 1944a, Las especies del género Zuberia en la Argentina: Anales del Museo de La Plata. Paleontología, sección B, Paleobotánica, v. 1, p. 130.Google Scholar
Frenguelli, J., 1944b, Contribuciones al conocimiento de la flora del Gondwana Superior en la Argentina. 20. Dicroidiopsis acuta (du Toit) Frenguelli: Notas del Museo de La Plata, Paleontología, v. 9, p. 413420.Google Scholar
Frenguelli, J., 1947, El género “Cladophlebis“ y sus representantes en la Argentina: Anales del Museo de La Plata (nueva serie), Paleontología: sección B. Paleobotánica, v. 2, p. 574.Google Scholar
Galtier, J., and Phillips, T.L., 1999, The acetate peel technique, in Jones, T.P., and Rowe, N.P., eds., Fossil Plants and Spores: Modern Techniques: London, Geological Society, p. 6770.Google Scholar
García Esteban, L., De Palacios, P., Guindeo Casasús, A., Lázaro Durán, I., González Fernández, L., Rodríguez Salvador, Y., Fernández García, S., Bobadilla Maldonado, I., and Camacho Atalaya, A., 2002, Anatomía e identificación de maderas de coníferas a nivel de especies: Madrid, Coedición Fundación Conde del Valle de Salazar: Ediciones Mundi-Prensa, 421 p.Google Scholar
García Esteban, L., Guindeo Casasús, A., Pereza Oramas, C., and de Palacios, P., 2003, La madera y su anatomía: Madrid, Coedición Fundación Conde del Valle de Salazar: Ediciones Mundi-Prensa, 327 p.Google Scholar
Geinitz, H.B., 1876, Über rhätische Pflanzen und Thierreste in den Argentinischen Provinzen La Rioja, San Juan und Mendoza: Palaeontographica Abteilung B, Supplement, v. 3, p. 114.Google Scholar
Giraud, B., 1991, Les espèces du genre Dadoxylon Depuis 1962: leur répartition et leur évolution du Permien à la fin du Mésozoïque: Review of Palaeobotany and Palynology, v. 67, p. 1339.Google Scholar
Gnaedinger, S., 2012, Ginkgoaleans woods from Middle Jurassic of the Argentina. Taxonomic considerations and palaeobiogeographical distribution: Geobios, v. 45, p. 187198.CrossRefGoogle Scholar
Gnaedinger, S., and Herbst, R., 2006, El género Prototaxoxylon Kräusel y Dolianiti (Taxales) de la Formación La Matilde (Jurásico Medio) del Gran Bajo de San Julián, provincia de Santa Cruz, Argentina: Ameghiniana, v. 43, p. 123138.Google Scholar
Gnaedinger, S., and Herbst, R., 2009, Primer registro de maderas gimnospérmicas de La Formación Roca Blanca (Jurásico Inferior), provincia de Santa Cruz, Argentina: Ameghiniana, v. 4, p. 5971.Google Scholar
Gnaedinger, S., and Zavattieri, A.M., 2015, Paleoflora de la Formación Llantenes (Triásico Superior), provincia de Mendoza, Argentina. Nuevos registros. XVI Simposio Argentino De Paleobotánica y Palinología. La Plata. Ameghiniana, v. 52, Suplemento Resúmenes, p. 34.Google Scholar
Gnaedinger, S., Garcia Massini, J.L., Becchis, F., and Zavattieri, A.M., 2015, Coniferous woods and wood decaying Basidiomycetes from the El Freno Formation (Lower Jurassic), Atuel Valley, North of the Neuquén Basin, Mendoza Province, Argentina: Ameghiniana, v. 52, p. 447467.CrossRefGoogle Scholar
Göppert, J.H.R., 1850, Monographie der fossilen Coniferen: Verhandelingen van de Hollandsche Maatschappij der Wetenschappen te Haarlem, v. 12, 359 p.Google Scholar
Gorozhankin, I.N., 1904. Lektsii po morfologii i sistematike archegonialnykh rastenij. II, Pteridophyta, I, Archispermae: Moscow, A.I. Mamontov, p. 7393. [in Russian]Google Scholar
Gothan, W., 1912, Über die Gattung Thinnfeldia Ettingshausen: Abhandlung der Naturhistorische Gesellschaft zu Nümberg, v. 19, p. 6780.Google Scholar
Grant-Mackie, J.A., Aita, Y., Balme, B.E., Campbell, H.J., Challinor, A.B., MacFarlan, D.A.B., Molnar, R.E., Stevens, G.R., and Thulborn, R.A., 2000, Jurassic palaeobiogeography of Australasia: Association Australasian Palaeontology Memoir, v. 23, p. 311353.Google Scholar
Greguss, P., 1955, Identification of Living Gymnosperms on the Basis of Xylotomy: Budapest, Akadémiai Kiado, 508 p.Google Scholar
Gulisano, C.A., and Gutiérrez Pleimling, A.R., 1994, Field Guide to the Jurassic of the Neuquén Basin, province of Neuquén: Asociación Geológica Argentina, Publicación Especial, Serie E 2, 111 p.Google Scholar
Hacke, U.G., Sperry, J.S., and Pittermann, J., 2004, Analysis of circular bordered pit function. II. Gymnosperm tracheids with torus-margo pit membranes: American Journal of Botany, v. 91, p. 386400.CrossRefGoogle ScholarPubMed
Halle, T.G., 1913, The Mesozoic flora of Graham Land: Wissenschaftliche Ergebnisse er Schwedischen Sudpolar Expedition 1901–1903, v. 3, p. 1115.Google Scholar
Hartig, T., 1848, Beitrage zur Geschichte der Pflanzen un zur Kenntniss der Norddeutschen Braunko Flora: Botanische Zeitung, v. 6, p. 185190.Google Scholar
Heer, O., 1878, Beiträge zur fossilen Flora Siberiens und des Amurlandes: Flora Fossilis Arctica, v. 5, p. 158.Google Scholar
Herbst, R., 1992, Propuesta de clasificación de las Dipteridaceae, con un Atlas de las especies argentinas: D'Orbignyana, v. 6, p. 171.Google Scholar
Herbst, R., Troncoso, A., and Gnaedinger, S., 2001, Rochipteris nov. gen., hojas incertae sedis (Chiropteris pro parte) del Triásico Superior de Argentina y Chile: Ameghiniana, v. 38, p. 257269.Google Scholar
Johnston, R.M., 1893, Further contributions to the fossil flora of Tasmania: Papers and proceedings of the Royal Society of Tasmania, p. 170179.Google Scholar
Kleiman, L.E., and Japas, M.S., 2009, The Choiyoi volcanic province at 34°S–36°S (San Rafael, Mendoza, Argentina): implications for the Late Palaeozoic evolution of the southwestern margin of Gondwana: Tectonophysics, v. 473, p. 283299.Google Scholar
Kloster, A., and Gnaedinger, S., 2018, Coniferous wood of Agathoxylon from the La Matilde Formation (Middle Jurassic), Santa Cruz, Argentina: Journal of Paleontology, v. 92, p. 546567.CrossRefGoogle Scholar
Kłusek, M., 2014, Miocene coniferous woods of the Polish Carpathian Foredeep: Acta Palaeontologica Polonica: v. 59, p. 697708.Google Scholar
Knowlton, F.H., 1888, New species of fossil wood (Araucarioxylon arizonicum) from Arizona and New Mexico: Proceedings of the United States National Museum, v. 11, p. 14.CrossRefGoogle Scholar
Koch, K., 1873, Dendrologie Vol. II, Theil 2: Die Cupuliferen, Coniferen und Monocotyledonen enthaltend: Erlangen, Verlag von Ferdinand Enke, 424 p.Google Scholar
Kownas, S., 1951, Trzeciorzędowe drewna z Dobrzynia nad Wisłąą: Studia Societatis Scientiarum Toruniensis, v. 1, p. 67121.Google Scholar
Kraüsel, R., 1919, Die fossilen Koniferenhölzer (unter Ausschluβ von Araucarioxylon Kraus): Palaeontographica, v. 62, p. 185275.Google Scholar
Kräusel, R., 1920, Nachträge zur Tertiärflora Schlesiens II. Braunkohlenhölzer: Jahrbuch der Preußischen Geologischen Landesanstalt, v. 39, p. 418460.Google Scholar
Kraüsel, R., 1924, Beiträge zur Kenntnis der fossilen Flora Südamerikas 1. Fossile hölzer aus Patagonien und benachbarten Gebieten: Arkiv för Botanik, v. 19, p. 136.Google Scholar
Kräusel, R., 1949, Die fossilen Koniferen-Hölzer (Unter Ausschluß von Araucarioxylon Kraus) II. Teil. Kritische Untersuchungen zur Diagnostik lebender und fossiler Koniferen-Hölzer: Palaeontographica B, v. 89, p. 83203.Google Scholar
Kräusel, R., 1962, Appendix on Antarctic fossil wood, in Plumstead, E.P., ed., Fossil Floras of Antartica: Trans-Antarctic Expedition, Scientific Reports, v. 9, p. 133140.Google Scholar
Kryshtofovich, A.N., 1910, Jurassic plants from Ussuriland: Trudy Geologicheskogo Komiteta, v. 56, p. 123. [in Russian]Google Scholar
Kunzmann, L., 2007, Araucariaceae (Pinopsida): aspects in palaeobiogeography and palaeobiodiversity in the Mesozoic: Zoologisch Anzeiger, v. 246, p. 257277.CrossRefGoogle Scholar
Kurtz, F., 1921, Atlas de las plantas fósiles de la República Argentina: Actas Academia Nacional de Ciencias (Córdoba) v. 7, p. 129153.Google Scholar
Lele, K.M., 1956, Plant fossils from Parsora in the South Rewa Gondwana Basin, India: The Palaeobotanist, v. 4, p. 2334.Google Scholar
Lepekhina, V.G., 1972, Woods of Palaeozoic pycnoxylic gymnosperms with special reference to North Eurasia representatives: Palaeontographica, Abt B, v. 138, p. 44106.Google Scholar
Leslie, A.B., Beaulieu, J., Holman, G., Campbell, C.S., Mei, W., Raubeson, L.R., and Mathews, S., 2018, An overview of extant conifer evolution from the perspective of the fossil record: American Journal of Botany, v. 105, p. 114.CrossRefGoogle ScholarPubMed
Lindley, J., and Hutton, W., 1837, The fossil flora of Great Britain, or figures and descriptions of the vegetable remains found in the fossil state in this country: Picadilly, James Ridgway and Sons, v. 3, p. 157230.Google Scholar
Llambías, E., Kleiman, L., and Salvarredi, J., 1993, El magmatismo gondwánico: 12° Congreso Geológico Argentino y 2° Congreso de Exploración de Hidrocarburos, Relatorio Geología y Recursos Naturales de Mendoza, v. 1, p. 5364.Google Scholar
Lutz, H.J., 1930, A new species of Cupressinoxylon (Goeppert) Gothan from the Jurassic of South Dakota: Botanical Gazette, v. 90, p. 92107.CrossRefGoogle Scholar
Maheshwari, H.K., 1972, Permian wood from Antarctica and revision of some Lower Gondwana wood taxa: Palaeontographica, v. 203 B, p. 182.Google Scholar
Manceda, R., and Figueroa, D., 1993, La inversión del Mesozoico en la Faja Plegada y Corrida de Malargüe, in Ramos, V.A., ed., Geología y Recursos Naturales de Mendoza: 12° Congreso Geológico Argentino y 2° Congreso de Exploración de Hidrocarburos (Mendoza), Actas 3, p. 179187.Google Scholar
Manceda, R., and Figueroa, D., 1995, Inversion of the Mesozoic Neuquén Rift in the Malargüe Fold and Trust Belts, Mendoza, Argentina, in Tankard, A.J., Suarez Soruco, R., and Welsink, H.J., eds., Petroleum Basins of South America: American Association of Petroleum Geologists, Memoir 62, p. 369382.Google Scholar
Mao, K., Milne, R.I., Zhang, L., Penga, Y., Liu, J., Thomas, P., Mill, R.R., and Renner, S.S., 2012, Distribution of living Cupressaceae reflects the breakup of Pangea: Proceedings of the National Academy of Sciences, v. 109, p. 77937798.CrossRefGoogle ScholarPubMed
Marguerier, J., 1976, Paleoxylologie du Karoo Malgache. Étude d'un bois fossile de la sakamena (District de Mahabo) Dadoxylon (Araucarioxylon) malaimbandense n. sp: Actes du 97 Congrés National des Societés Savantes (Nantes), p. 87–105.Google Scholar
McLoughlin, S., 2001, The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism: Australian Journal of Botany, v. 49, p. 271300.CrossRefGoogle Scholar
Menéndez, C.A., 1951, La flora Mesozoica de la Formación Llantenes (provincia de Mendoza): Revista del Instituto Nacional de Investigación de las Ciencias Naturales (Ciencias Botánicas), v. 2, p. 147261.Google Scholar
Molina, G.I., 1782, Saggio sulla storia naturale del Chili: Bologna, S. Tommaso d'Aquino, 367 p.CrossRefGoogle Scholar
Morel, E.M., Ganuza, D.G., and Zúñiga, A., 2000, Revisión paleoflorística de la Formación Paso Flores, Triásico superior de Río Negro y del Neuquén, Argentina: Revista de la Asociación Geológica Argentina, v. 54, p. 389406.Google Scholar
Morel, E.M., Stipanicic, P.N., and Ganuza, D.C., 2001, Formación Chihuido, in Stipanicic, P.N., and Marsicano, C.A., eds., Léxico Estratigráfico de la Argentina. Volúmen VIII Triásico: Asociación Geológica Argentina, Serie “B” (Didáctica y Complementaria N° 26), p. 8485.Google Scholar
Morel, E.M., Artabe, A., and Spalletti, L.A., 2003, Triassic floras of Argentina: biostratigraphy, floristic events and comparison with other areas of Gondwana and Laurasia: Alcheringa, v. 27, p. 231243.Google Scholar
Oishi, S., 1931, On Fraxinopsis and Yabeiella Oishi gen. nov., Japan: Japanese Journal of Geology and Geography, v. 8, p. 259267.Google Scholar
Oishi, S. and Huzioka, K., 1938, Fossil plants from Nariwa: a supplement: Journal of the Faculty of Science, Hokkaido Imperial University, ser. 4, v. 4, p. 69101.Google Scholar
Oldham, T. and Morris, J., 1863, 1. The fossil flora of the Rajmahal series in the Rajmahal Hills: Memoirs of the Geological Survey of India, Palaeontologia Indica, v. 2, p. 152.Google Scholar
Olivera, D.E., Zavattieri, A.M., and Quattrocchio, M.E., 2015, The palynology of the Cañadón Asfalto Formation (Jurassic), Cerro Cóndor depocenter, Cañadón Asfalto Basin, Patagonia, Argentina: palaeoecology and palaeoclimate based on ecogroup analysis: Palynology, v. 39, p. 362386.CrossRefGoogle Scholar
Ottone, E.G., Mancuso, A.C., and Resano, M., 2005, Miospores and chlorococcalean algae from the Los Rastros Formation, Middle to Upper Triassic of central-western Argentina: Ameghiniana, v. 42, p. 347362.Google Scholar
Parrish, J.T., 1993, Climate of the supercontinent Pangea: Journal of Geology, v. 101, p. 215233.CrossRefGoogle Scholar
Paull, R., and Hill, R., 2010, Early Oligocene Callitris and Fitzroya (Cupressaceae) from Tasmania: American Journal of Botany, v. 97, p. 809820.CrossRefGoogle ScholarPubMed
Petriella, B.T., 1979, Sinopsis de las Corystospermaceae (Corystospermales, Pteridospermophyta) de Argentina, I-Hojas: Ameghiniana, v. 16, p. 81101.Google Scholar
Philippe, M., 1993, Nomenclature génerique des tracheidoxyles mesozoïques á champs araucarïdes: Taxon, v. 40, p. 7482.CrossRefGoogle Scholar
Philippe, M., and Bamford, M.K., 2008, A key to morphogenera used for Mesozoic conifer-like woods: Review of Palaeobotany and Palynology, v. 148, p. 184207.CrossRefGoogle Scholar
Poole, I., and Cantrill, D., 2001, Fossil woods from Williams Point Beds, Livingston Island, Antarctica: a Late Cretaceous southern high latitude flora: Palaeontology, v. 44, p. 10811112.Google Scholar
Prakash, U., and Srivastava, S.K., 1961, On gymnospermous fossil woods from Sitapuri District Dhar in Madhya Pradesh: The Palaeobotanist, v. 10, p. 1017.Google Scholar
Prill, W., 1913, Beiträge zur Kenntnis schlesischer Braunkohlenhölzer II: Inaugural Dissertation, W.G. Korn, Breslau, 68 p.Google Scholar
Pujana, R.R., Santillana, S.N., and Marensi, S.A., 2014, Conifer fossil woods from the La Meseta Formation (Eocene of Western Antarctica): evidence of Podocarpaceae-dominated forests: Review of Palaeobotany and Palynology, v. 200, p. 122137.CrossRefGoogle Scholar
Rajanikanth, A., and Sukh-Dev, A., 1989, The Kota Formation: fossil flora and stratigraphy: Geophytology, v. 19, p. 5264.Google Scholar
Ram-Awatar, , and Rajanikanth, A., 2007, Triassic conifer wood from the Tiki Formation, South Rewa Basin, Madhya Pradesh, India: The Palaeobotanist, v. 56, p. 127132.Google Scholar
Retallack, G.J., 1980, Middle Triassic megafossil plants and trace fossils from Tank Gully, Canterbury, New Zealand: Journal of the Royal Society of New Zealand, v. 10, p. 3163.CrossRefGoogle Scholar
Retallack, G.J., 1981, Middle Triassic megafossil plants from Long Gully near Otematata, North Otago, New Zealand: Journal of the Royal Society of New Zealand, v. 11, p. 167200.CrossRefGoogle Scholar
Richter, H.G., Grosser, D., Heinz, I., and Gasson, P.E., 2004, eds., International Association of Wood Anatomists list of microscopic features for softwood identification: IAWA Journal, v. 25, p. 170.CrossRefGoogle Scholar
Román-Jordán, E., García Esteban, L., Palacios, P., and Fernández, F., 2017, Comparative wood anatomy of the Cupressaceae and correspondence with phylogeny, with special reference to the monotypic taxa: Plant Systematics and Evolution, v. 303, p. 203219.CrossRefGoogle Scholar
Ruiz, D.P., Brea, M., Raigemborn, M.S., and Matheos, S.D., 2017, Conifer woods from the Salamanca Formation (early Paleocene), Central Patagonia, Argentina: paleoenvironmental implications: Journal of South American Earth Sciences, v. 76, p. 427445.CrossRefGoogle Scholar
Sah, S.C.D., and Jain, K.P., 1964, Some fossil woods from the Jurassic of Rajmahal Hills, Bihar, India: The Palaeobotanist, v. 12, p. 169180.Google Scholar
Schmidt, O., 2006, Wood rot, in Czeschlik, D., ed., Wood and Tree Fungi. Biology, Damage, Protection, and Use: Heidelberg, Springer, p. 135146.Google Scholar
Schroeter, C., 1880, Untersuchung über Fossile Hölzer aus der arktischen Zone: Flora Fossilis Arctica, v. 6, p. 138.Google Scholar
Schwarze, F.W.M.R., 2007, Wood decay under the microscope: Fungal Biology Reviews, v. 21, p. 133170.CrossRefGoogle Scholar
Schweingruber, F.H., 2007, Wood Structure and Environment. Springer Series in Wood Science: Berlin, Heidelberg, Springer-Verlag, 279 p.Google Scholar
Schweingruber, F.H., and Börner, A., 2018, The Plant Stem. A Microscopic Aspect: Berlin, Heidelbert, Springer, 207 p.CrossRefGoogle Scholar
Schweingruber, F.H., Börner, A., and Schulze, E.D., 2006, Atlas of Woody Plant Stems. Evolution, Structure and Environmental Modifications. Springer Series in Wood Science: Berlin, Heidelberg, Springer-Verlag 229 p.Google Scholar
Scotese, C.R., Boucot, A.J., and McKerrow, W.S., 1999, Gondwanan palaeogeography and palaeoclimatology: Journal of African Earth Sciences, v. 28, p. 99114.CrossRefGoogle Scholar
Seward, A.C., 1926, The Cretaceous plant-bearing rocks of Western Greenland: Philosophical Transactions of the Royal Society, v. 21, p. 57175.Google Scholar
Shirley, J., 1898, Additions to the fossil flora of Queensland: Publications of the Geological Survey, v. 128, p. 125.Google Scholar
Solms-Laubach, H., 1899, Beschreibung der Pflanzenreste von La Ternera: Neues Jahrbuch für Geologie und Paläontologie, v. 12, p. 593609.Google Scholar
Spalletti, L.A., 1997, Sistemas deposicionales fluvio-lacustres en el rift triásico de Malargüe (sur de Mendoza, República Argentina): Anales de la Academia Nacional de Ciencias Exactas, Físicas y Naturales, v. 49, p. 109124.Google Scholar
Spalletti, L.A., and Morel, E.M., 1992, La sedimentación fluvial en la etapa inicial de evolución de una cuenca vinculada con fallas activas y vulcanismo explosivo: la Formación Chihuíu (Triásico), sur de Mendoza (Argentina): 4° Reunión Argentina de Sedimentología, Actas 1, p. 159–166.Google Scholar
Spalletti, L.A., Artabe, A., Morel, E.M., and Brea, M., 1999, Biozonación paleoflorística y cronoestratigrafía del Triásico Argentino: Ameghiniana, v. 36, p. 419451.Google Scholar
Spalletti, L.A., Artabe, A., and Morel, E.M., 2003, Geological factors and evolution of southwestern Gondwana Triassic plants: Gondwana Research, v. 6, p. 119134.CrossRefGoogle Scholar
Stipanicic, P.N., 1979, El Triásico de Valle del río de Los Patos (provincia de San Juan), in Turner, J.C.M., ed., Geología Regional Argentina: Córdoba, Academia Nacional de Ciencias, v. 1, p. 695744.Google Scholar
Stopes, M., 1915, Catalogue of the Mesozoic plants in the British Museum—The Cretaceous flora, Part 2, Lower Greensand (Aptian) plants of Britain: London, British Museum (Natural History), 360 p.Google Scholar
Strzelecki, P.E., 1845, Physical Description of New South Wales and Van Diemen's Land: London, Longman, Brown, Green and Longmans, 176 p.Google Scholar
Stubblefield, S., and Taylor, T., 1986, Wood decay in silicified Gymnosperms from Antarctica: Botanical Gazette, v. 147, p. 116125.CrossRefGoogle Scholar
Stubblefield, S., Taylor, T., and Beck, C., 1985, Studies of Paleozoic fungi. V. Wood decaying fungi in Callixylon newberryi from the Upper Devonian: American Journal of Botany, v. 72, p. 17651774.CrossRefGoogle Scholar
Szajnocha, L., 1889, Über fossile Pflanzereste aus Cacheuta in der Argentinischen Republik: Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe 97, p. 219245 p.Google Scholar
Taylor, E.L., Taylor, T.N., and Krings, M., 2009, Paleobotany: The Biology and Evolution of Fossil Plants, 2nd ed.: Amsterdam, Academic Press, 1230 p.Google Scholar
Thybring, E.E., Kymäläinen, M., and Rautkari, L., 2018, Moisture in modified wood and its relevance for fungal decay: iForest—Biogeosciences and Forestry, v.11, p. 418422.CrossRefGoogle Scholar
Torres, T., and Philippe, M., 2002, Nuevas especies de Agathoxylon y Baieroxylon del Liásico de La Ligua, Chile, y evaluación de antecedentes paleoxilológicos en el Jurásico de América del Sur: Revista Geológica de Chile, v. 29, p. 151165.CrossRefGoogle Scholar
Tortorelli, L.A., 2009, Maderas y Bosques Argentinos: Buenos Aires, Orientación Gráfica Editora, 910 p.Google Scholar
Uliana, M.A., and Biddle, K.T., 1988, Mesozoic–Cenozoic paleogeographic and geodynamic evolution of Southern South America: Revista Brasileira de Geociências, 18, v. 2, p. 172190.CrossRefGoogle Scholar
Vaudois, N., and Privé, C., 1971, Révision des bois fossiles de Cupressaceae: Palaeontographica B, v. 134, p. 6186.Google Scholar
Vergani, G.D., Tankard, J., Belotti, J., and Welsink, J., 1995, Tectonic evolution and paleogeography of the Neuquén Basin, Argentina, in Tankard, A.J., Suárez, R., and Welsink, H.J., eds., Petroleum Basins of South America: American Association of Petroleum Geologists, Memoir, v. 62, p. 383402.Google Scholar
Vogellehner, D., 1965, Untersuchungen zur Anatomie und Systematik der verkieeselten Hölzer aus dem fränkischen und süd-thüringischen Keuper: Erlanger geologische Abhandlungen, v. 59, p. 176.Google Scholar
Volkheimer, W., and Papú, O.H., 1993, Una microflora del Triásico Superior de la cuenca de Malargüe, localidad Llantenes, provincia de Mendoza, Argentina: Ameghiniana, v. 30, p. 93100.Google Scholar
Vozenin-Serra, C., and Salard-Cheboldaeff, M., 1992, Les bois Mineralises Permo-Triasiques de Nouvelle Caledonie. Implications Phylogenetique et Paleogeographique: Palaeontographica, v. 225B, p. 125.Google Scholar
Walkom, A.B., 1921, Mesozoic floras of new South Wales. Part. I. Fossil plants from the Cockabuta Mountain and Talbragar: Memoirs of the Geological Survey of New South Wales, Palaeontology, v. 12, p. 121.Google Scholar
Wright, J.E., and Albertó, E., 2002, Guía de los hongos de la región Pampeana. II. Hongos sin laminilla: Buenos Aires, L.O.L.A. (Literature for Latin America), 410 p.Google Scholar
Yao, X., Taylor, T.N., and Taylor, E.L., 1997, A taxodiaceous seed cone from the Triassic of Antarctica: American Journal of Botany, v. 84, p. 343354.CrossRefGoogle ScholarPubMed
Yokoyama, M., 1889, Jurassic plants from Kaga, Hida and Echizen: Journal of the College of Science, Imperial University of Tokyo, v. 3, p. 166.Google Scholar
Yoshizawa, N., Itoh, T., and Shimaji, K., 1982, Variation in features of compression wood among gymnosperms: Bulletin of the Utsunomiya University Forests 18, p. 4564.Google Scholar
Yoshizawa, N., Itoh, T., and Shimaji, K., 1985, Helical thickenings in normal and compression wood of some softwoods. IAWA Bulletin n.s., v. 6, p. 131138.CrossRefGoogle Scholar
Zamuner, A.B., Zavattieri, A.M., Artabe, A.E., and Morel, E.M., 2001, Paleobotánica, in Artabe, A.E., Morel, E.M., and Zamuner, A.B., eds., El Sistema Triásico en la Argentina: La Plata, Argentina, Fundación Museo de La Plata “Francisco Pascasio Moreno,” v. 8, p. 143184.Google Scholar
Zavattieri, A.M., and Batten, D.J., 1996, Miospores from Argentinian Triassic deposits and their potential for intercontinental correlation, in Jansonius, J., and McGregor, D.C., eds., Palynology: Principles and Applications: American Association of Stratigraphic Palynologists Foundation, v. 2, p. 767778.Google Scholar
Zhang, H.B., Yang, M.X., Tu, R., Gao, L., and Zhao, Z.W., 2008, Fungal communities in decaying sapwood and heartwood of a conifer Keteleeria evelyniana: Current Microbiology, v. 56, p. 358362.CrossRefGoogle ScholarPubMed